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Abstract. Tissue intensity standardization is an important preprocess-
ing step in the study and analysis of Magnetic Resonance Images (MRI)
of human brain. Sources of variations in the intensity ranges across dif-
ferent MRI volumes, even after intensity inhomogeneity correction, can
result from heterogeneity of data due to difference in scanners, presence of
Multiple Sclerosis (MS) lesions and the stage of disease progression in the
brain. As a result, intensity normalization plays a significant role in stan-
dardizing the tissue intensity ranges across MRI volumes on which most
automatic image analysis methods base their distributional assumptions.
The method of Nyul et. al. [3] has become a widely used standard for in-
tensity normalization. However, an extensive validation of this approach
on multi-site multi-scanner data in the presence of MS has yet not been
performed. We aim to undertake this validation in this work and show
the effectiveness of this procedure on standardizing tissue intensities in
the MRI volumes.

1 Introduction

Multiple Sclerosis (MS) is the most common neurological disease affecting young
adults in North America. MS is a demyelineating disease of CNS where myelin,
the insulation around nerve fibre (axon) is attacked resulting in focal MS lesions.
Magnetic Resonance Imaging (MRI), because of its ability to visualize lesions
with very high contrast sensitivity, has proven to be critical in identifying the MS
lesions serving as disease markers. Most of the automatic and semi-automatic le-
sion identification and tissue type segmentation approaches applied to brain MRI
volumes rely, explicitly or implicitly, on strong assumptions regarding the shape
of the underlying distribution of various tissue type intensities. However, large
variations in intensity ranges can violate these assumptions significantly and ad-
versely affect their success. These variations stem not only from the differences
in the protocols of various MRI scan acquisitions, the different manufacturers
and scanner models, but also due the fact that scans from various sites can corre-
spond to patients at varying stages of the disease, and the presence of pathology
can impact the tissue intensity behaviors significantly. As a result, a lack of



standard intensity scale makes it difficult to generalize the relative behavior of
various tissue types across different volumes. Hence, in addition to having a stan-
dardized protocol of data acquisition, it is further necessary to preprocess the
data before any segmentation or lesion identification technique can be applied.
There are two main steps in such pre-processing: (1) the intensity inhomogeneity
correction [5] and (2) the intensity normalization. The former is generally aimed
at addressing scanner specific variations in specific MRI images. In this paper,
we address the latter and examine a technique to correct the non-uniformity in
intensity scales across various images. We aim at assessing the effectiveness of
this normalization over the variations mentioned above.

Various intensity normalization methods have been proposed to deal with
intensity scale inhomogeneity of various tissue types and have met with varying
degrees of success. Among the approaches aimed at MRI intensity normaliza-
tion, some of the main techniques include those based on utilizing even-order
histogram derivatives [7], template histogram matching using multiplicative cor-
rection field [6], region-specific standardization [21], and mapping the normaliza-
tion problem to non-linear registration problem [20]. Although, some methods
such as the one proposed in [20] show good results, they suffer from high com-
putational complexity requirements, partially due to the non-linear registration
requirements. Some of the issues with other faster methods include lack of adapt-
ability to brain images (e.g., in the case of [21]), dependence on specific brain
segmentation algorithm [7] and difficulty in obtaining standard templates (e.g.,
in the case of [6]).

One of the most widely accepted and utilized intensity normalization meth-
ods has been that of Nyul et. al. [1] which seems to give the best of both worlds
in the sense that the method is easy to implement, adaptable to various body
parts and gives results comparable to the more accurate, but slower, methods
described above[19].4 The two stage method consist of a training stage to find
the parameters, which includes the range and mode, of the standard scale and
a transformation stage that maps the histograms of candidate volumes to the
standard histogram scale. Nyul et. al. [1] also present a quantitative and qual-
itative evaluation of this intensity normalization method with regard to intra-
and inter-patient variations. However, there is no evaluation available, to the
best of our knowledge, of the effectiveness of this normalization method across
scanners from different brands or manufacturers as well as variations occurring
due to different machines of the same brand. Furthermore, it is not conclusively
confirmed if the intensity normalization is equally effective in the presence of
pathology such as MS in the brain and reflected in the resulting MRIs.

In this work we study the effect of these variations on the efficacy of the
intensity normalization procedure of [1] both qualitatively and quantitatively. In
addition to investigating the effect of the intensity normalization and its depen-
dence on data from heterogenous sources. We also examine its behavior on the
different MRI acquisition modalities. Finally, and probably more importantly,
we assess the effect of the technique in the presence of MS lesions.

4 The earlier version of the Nyul approach appears in [3].



The rest of the paper is organized as follows: Section 2 briefly describes
Nyul et. al.’s decile formulation of the intensity normalization of [1] utilized in
this work. Section 3 gives details of the data acquisition and the image non-
uniformity and inhomogeneity correction preprocessing. Section 4 presents the
evaluation framework followed by qualitative and quantitative evaluation results
in Sections 4.1 and 4.2 respectively. Finally, we conclude with a discussion of
future work in Section 5.

2 Decile Formulation of Normalization method of Nyul
et. al. [2]

The two-stage method of Nyul and Udupa [3, 1] has some significant advantages
over other methods. It is both easier to customize to various body regions and
is fast in practice. Moreover, the method does not sacrifice accuracy for gains
in speed. Some of these methods were compared by [19]. Their results further
confirms these conclusions. Another major advantage of this approach is that it
does not rely heavily on specific statistical properties of tissue classes and has
a lower computational complexity. As discussed by [2], the original formulation
of the normalization procedure of [3] suffers from some limitations in the case
of application to the MRIs of brains with MS. One of the main issues arose
from the fact that the method relied on a single landmark over the intensity
histogram (the mode) to identify the standard scale resulting in a switching
behavior whereby incorrect tissue types can be mapped against each other.

The authors of [2] suggest variants to the proposed intensity normalization
methods. However, rigorous validation of these variants has not been done so
far. We now present a variant that is an adaptation of the method of [3, 1] with
deciles piecewise linear mapping as described below.

2.1 Notations

We consider a volume image I consisting of voxel elements e ∈ E and an in-
tensity mapping function fei : E → N0 that maps each voxel element e to an
intensity value. Hence, fei(e) ≥ 0, ∀e ∈ E with the equality satisfied iff there is no
measured data for element e, and N0 is the set {0, 1, 2, . . .} of natural numbers.
Hence, each volume image can be described jointly by the set of voxel elements
E and the associated intensity mapping function fei I = (E, fei). That is, I
represents, in our case, three dimensional brain volume image acquired through
MR Imaging. fei is element to intensity transformation function that assigns an
integer intensity value i ∈ N0 to each element e. Note, however, that we have
access only to the intensity values for each voxel element e. The function fei is
considered to be the underlying intensity mapping function but this function is
generally not known.

We denote by A = {A1, A2, . . . , Ak} the set of acquisition modalities of MRIs
such that |A| = k. In our case, we focus on mainly three image modalities: the
PD, T1 and T2 weighted images. That is, we have k = 3.

Let IA denote the superset of all images I that can be acquired according
to the protocols in A. The histogram of an image I is denoted by ~ = (I, fic)



such that I ⊂ N0 is the set of all possible intensity values in I and fic : I → N0

is intensity to count mapping function such that fic(i) = | {fei(e) = i} |. That
is, the function fic(i) outputs the number of voxel elements that have an as-
sociated intensity value of i. Finally, let imin and imax denote the minimum
and maximum intensity values respectively in an image I. That is, imin =
min {fei(e)|e ∈ E, fei(e) 6= 0} and imax = max {fei(e)|e ∈ E, fei(e) 6= 0}.

2.2 Choosing Intensity range

The tails of the image histograms are generally pruned so as to make the algo-
rithm robust against artifacts and outliers resulting in inter-patient and scanner
variations. This pruning results in an intensity range called intensity of interest
(IOI). Let plow and phigh denote the minimum and maximum percentile values
of the overall intensity range that bounds this IOI. Now, let i~

min and i~
max be the

minimum and maximum intensity values in the histogram ~ corresponding to
plow and phigh respectively. We consider the more common bimodal histograms
for the MR images as suggested by [3] and hence use the second mode, denoted
as m corresponding to the main foreground object in the image as a histogram
landmark.

We consider the following landmark configuration CL:

CL = [plow, phigh, m10, m20, m30, m40, m50, m60, m70, m80, m90]

where each mi, i ∈ {10, 20, . . . , 90} denotes the mode at each decile. Finally,
let ismin and ismax be the minimum and maximum intensity values in the stan-
dard scale respectively (the superscript denoting the standard scale). Given, this
setting, our intensity normalization algorithm is implemented in two stages as
described below.

2.3 The Algorithm

The two-stage intensity standardization algorithm can be summarized as follows.
For each image in the training set of images, we determine the image histogram.
From this image intensity histogram, we determine the intensity value i~

min cor-
responding to plow and the intensity value i~

max corresponding to phigh the upper
percentile. Now, we identify the intensity values mi

10
, . . . , mi

90
that correspond

to each decile of this intensity range of interest. The minimum and maximum in-
tensity values of the image i~

min and i~
max are then mapped to the corresponding

minimum and maximum intensity values ismin and ismax of the standard inten-
sity scale respectively. Note that the values forming the range of the standard
intensity scale ismin and ismax are parameters of the learning algorithms and are
chosen by the user. The choice generally depend on the trade-off between the
desired resolution of the resulting intensity standardization scale and the desired
efficiency in the intensity mapping in each segment of this intensity range un-
der the decile formulation. Once the mapping from the actual image intensity
range to the standard intensity scale is done, new landmarks corresponding to
each decile of the mapped image m′i

10
, . . . , m′i

90
are calculated. The landmarks for



the standard scale are then calculated from the rounded means of each of the
landmarks from the mapped image from the training set of images.

The landmarks of the standard scale obtained from the training phase are
then used, in the second stage of the algorithm, to perform the transformation
of a new MRI image to the standard scale as follows. Given a new MRI image Ii,
we compute the histogram ~i of the new image and determine the plow and Phigh

percentiles. We also determine the intensity values corresponding to each decile
(landmark locations) in this image. These intensity values corresponding to the
decile landmarks enables segmenting of the image in ten segments. Each of the
segment is then linearly mapped to the corresponding segment of the standard
image intensity scale determined in the training stage of the algorithm. This
output the standardized image Is

i of the input image Ii.

3 Data Acquisition and pre-processing

To test the performance of MRI intensity normalization techniques by [1] across
MRI scanners made by different manufactures, and different brands of MRI
scanners from the same manufacture, a group of subjects’ MRI scans (T1w, T2w,
and PDw modalities), were obtained courtesy of NeuroRx Research (Montreal,
Canada).

The MR images for study were selected based on a combination of diverse cri-
terions. The selected group includes in total 21 MRI scans, with seven subjects
acquired from MRI machines made by each of the three major MRI machine
manufactures (GE, Phillips, and Siemens).5 Within each sub-group of 7 cases,
the sampled patients also possess varying sizes of ventricles, and varying loads of
MS lesions. An effort was made to standardize the protocols in a scanner-specific
manner that resulted in comparable contrasts across images from different scan-
ners. Each MRI volume has a resolution of 1× 1× 3 mm for voxels in each slice
with each volume containing 50 slices.

Different MRI modalities acquired may not correlate spatially upon acquisi-
tion due to various reasons such as patient movement, scanner behavior over time
and so on. An alignment is required as a result so as to obtain spatial correlation
between brain volumes. Therefore, image modalities are aligned to a common
stereotaxic space so that the voxel locations between modalities have a determin-
istic mapping. Following the alignment, an intensity inhomogeneity correction is
performed followed by the intensity standardization (normalization).6

Factors such as the Partial Volume effect resulting from the limited scanner
resolution can affect the tissue intensity behavior significantly. However, the na-
ture of these effects is not very well understood. Hence, we limit ourselves to
studying the intensity behavior of various tissue types from voxels that are free

5 The scanner models included Signa, Genesis Signa and Signa Excite from GE, Intera
and Infinion from Philips, and Symphony, Symphony Vision, Allegra and Avanto
from Siemens.

6 The order of the intensity inhomogeneity correction and the intensity normalization
can have significant impact as noted by [8]. In accordance with their observations,
we follow the intensity inhomogeneity correction by intensity normalization step.



from such variations. We refer to such voxels as “pure” tissue voxels. Thus, we
obtain “pure” tissue samples from each tissue type category. Subsequently, the
effects of normalization are studied and evaluation performed on these “pure”
tissue samples for each tissue category. Voxels corresponding to the tissues be-
longing to four tissue classes: white matter (WM), cortical gray matter (CGM),
deep gray matter (DGM) and cerebrospinal fluid (CSF), were manually sampled
uniformly from various anatomical locations. Further sampling is performed in
alternate slices so as to obtain representative samples from the whole volume
averaging about 1000 samples per tissue type from approximately 20 slices per
volume. These samples are obtained from MRI images both before and after the
intensity normalization is performed. Due to the fact that MS lesions are more
difficult to be identified correctly, lesions were first identified automatically using
heuristic-based classification technique [4] and are then further validated by five
expert radiologists. The samples of the lesions accepted are the ones that are
agreed upon by a consensus of experts.

4 Evaluation

We perform the training of the intensity normalization algorithm on a set of
100 separate MRI volumes with varying brain volume, scans at different stages
of MS and varying lesion loads. The standard scale histogram parameters were
obtained from this training set of 100 Multiple Sclerosis brain volumes and were
the same for all image modalities. These parameters then defined the standard
scale used for normalization of subsequent images.

The evaluation of the normalization algorithm was performed keeping in per-
spective the potential advantages and uses of the resulting normalized images.
The main factors hence include testing whether the tissue intensities behave in
accordance with the assumptions made by various automatic lesion segmenta-
tion and analysis techniques, whether the change in tissue intensity behavior
helps in increasing the efficacy of such methods, the effect of MRIs coming from
heterogenous sources including scanners from different manufacturers as well as
different scanner (models) from the same manufacturer. The dataset chosen for
testing accordingly takes these factors into account. Further we also performed
inter-patient analysis of intensity behaviors across different tissue types. Finally,
unlike [2], we do not work with lesion removed images since we are interested in
understanding the behavior of the tissue intensity normalization method in the
presence of this MS pathology.

4.1 Qualitative Evaluation

We first present qualitative effect of the intensity normalization on the multi-
spectral MRI volumes. Figure 1 shows the effect of normalization on axial image
slices of the T1, T2 and PD modality MRI volume from an MS patient from
among the ones used to test the procedure. We study both the overall effect
and the effect of normalization on scanners from various manufacturers. Fig-
ure 2 presents the scatter plots of the multispectral volumes grouped by tissue
type for all MRI volumes as well as for the MRI volumes grouped by scanner



manufacturer. Each point in the scatterplots in the first row represent the three
dimensional intensity vector for the corresponding voxel with each value in the
vector denoting the intensity value in one of the acquired image modalities (T1w,
T2w, PD). The same data after intensity normalization is shown in the second
row. From the first row of Figure 2 it can be seen how each set of tissue classes

(a)t1-nu (b)t2-nu (c)pd-nu

(d)t1-norm (e)t2-norm (f)pd-norm

Fig. 1. Qualitative images of MRI slices before and after normalization. The three
images in the first row give T1, T2 and Pd slices from an un-normalized MRI volume;
the three images in the second row give the corresponding normalized slices.
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(d) Siemens
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(g) GE
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Fig. 2. Intensity distribution scatterplots of various brand machines. The first row gives
intensities before normalization and the second row after normalization. The intensi-
ties in Red denote White matter, in Green denote Cortical Gray Matter, in Magenta
denote Deep Gray Matter, and in Blue denote CSF. Lesions are not included in the
unnormalized image intensities since they were labelled after the image normalization
process and hence expert labeling was not available for the lesions.

(WM, Deep GM, Cortical GM, and CSF) belonging to the same subject has a
characteristic spatial distribution. When all subjects are plotted together, the
variations in imaging acquisition from different scanner brands and their sub-
series are visible. As shown in the second row, these variations in tissue intensity



distributions’ localization relative to each other are largely reduced as a result
of the intensity normalization. The same effect can also be seen in the case of
scanners from different manufacturers. A standardized characterization of in-
tensity distributions for various tissue types on a standard scale has significant
implication on the performance of both the automatic lesion identification as
well as tissue segmentation algorithms.

4.2 Quantitative Evaluation

Various studies have suggested that the underlying distribution of various MRI
tissue intensities from human brain can be approximated as Gaussian [10, 11].
Moreover, many parametric algorithms that perform tissue segmentation as well
as automatic or semi-automatic lesion identification support and rely on the
Gaussian assumption (see, for instance, [17]). We wish to investigate how repre-
sentative are the voxel intensities from various tissue types of a Gaussian model
built around the necessary statistics computed from the data. We will use the
Jeffrey divergence measure to assess the impact of the intensity normalization
on these assumptions as discussed below.

Since the intensity normalization is applied on a single modality basis, we
restrict all our analysis for distributions of tissue intensities to single modalities
as well. However, some studies do claim that the tissues maintain a Gaussian
distribution in a multi-spectral space (see, for instance, [17] for T1w, T2w and
PD modalities).

For the un-normalized MRI volumes, we first compute the necessary statis-
tic of a Gaussian distribution from the data which would be the mean vec-
tor µa

t and the variance (σa
t )2 over the MRI intensity values for tissue type t

where t ∈ T such that T is the set of all tissue types and a ∈ A such that
A denotes the set of acquisition modalities. We consider T containing Corti-
calGM, WM, DeepGM, CSF and Lesion tissue types. We can then generate
samples of a Gaussian distribution centered at µa

t and with a variance (σa
t )2,

i.e., N (µa
t , (σa

t )2), ∀t ∈ T , ∀a ∈ A. Next, for each tissue type t ∈ T , we generate
100-bin sized histograms from the data over three modalities taking into account
98 data percentile (upper and lower 1 percentile data left out as noise and out-
liers). This gives an account of the actual model of the data for the given tissue
type.

In order to verify whether the sample distributions differ significantly from
Gaussians, we employ the Jeffrey divergence measure to calculate the distance
between these two distributions. Jeffrey divergence is a symmetric measure of
similarity between two distributions. Low values of divergence represent less
difference between the two distributions. For any two continuous probability
distributions p(·) and q(·), the Jeffrey Divergence [18] is defined as:

D(p, q) =

∫ ∞

−∞

p(x) log
p(x)

q(x)
dx +

∫ ∞

−∞

q(x) log
q(x)

p(x)
dx



In our case, under gaussian assumptions for p(x) and q(x) we can use a discretized
approximation of the above metric.7 In order the assess the effect of the intensity
normalization, we employ the same distribution generation method as discussed
above but this time on intensity normalized MR images. We again calculate the
Jeffrey divergences. The data statistics and the Jeffrey divergence values before
and after intensity normalization are shown in Figure 3. Hence, We effectively
calculate the divergences between a Gaussian distribution centered at sample
mean with the sample variance, and the histogram model built from observed
intensities. If the sample indeed comes from a Gaussian distribution then this
difference would be small. Also, if intensity normalization does not play any role
then the divergence value after normalization should not differ too much from
the one before normalization.

It can be seen that clearly intensity normalization has a significant role to
play in tissue modeling as a result of the reduced Jeffrey divergence measure
over the distribution differences after normalization. We have also performed
the same analysis to check for scanner-specific effects. To do so, we perform a
similar analysis but this time only on MRI images from scanners from a specific
manufacturer. As can be seen in Figure 3, the same observations and conclusions
as above hold in these cases too. Intensity normalization, hence, results in data
that is more homogenous for a given tissue type and that is more representative
of the underlying distribution. This has significant potential impact in further
automatic processing and analysis of the data including automatic image seg-
mentation with regard to various tissue types as well as identifying pathological
tissues.

4.3 Tissue Divergences

In order to investigate the effect of intensity normalization on the ability to dis-
criminate between various tissue types, we again employ the Jeffrey divergence
measure between the distributions of pairs of tissue types before and after nor-
malization. In order to do this, we obtain the histogram models over the voxel
intensities for the pairs of tissue to be compared. We calculate the distance be-
tween these two distributions using the Jeffrey divergence measure as described
above. Next, we do the same for normalized images. If the intensity normalization
improves the tissue contrast then we should see an increase in these divergence
measures between the two distributions on the normalized images. That is, if we
assume that the normalization has no effect in making intensities from the same
tissue type more homogenous (and different from those of other tissue types)
then we would not observe any change in the divergence values between the
distributions of two different tissue types as a result of normalization.

For this analysis, we concern ourselves with the characteristic of primary
tissue types, that is, the GM (combined Deep GM and Cortical GM), WM

7 In addition to considering various studies that claim that the tissue distribution can
be approximated as Gaussian, we also performed goodness of fit tests with different
known distributions. The results from these tests too suggested Gaussian distribution
to be able to approximate the underlying data generating model most closely, even
for un-normalized data.



(a) White Matter

(b) Grey Matter

(c) Cerebro Spinal Fluid

(d) MS Lesions

Fig. 3. Divergence measures between distribution fits before and after normalization.
The blue bars in each graph denote, for a given modality and tissue type, the Jeffrey
divergence measure between the Gaussian distribution centered at the sample mean
with sample variance, and the histogram model generated from tissue intensities on the
un-normalized volumes. The red bars correspond to the same measure over volumes
after normalization. An absence of bar indicates that the divergence was too small to
plot. Each row corresponds to measures for a given tissue type. Each column refers
to divergence measures for MRI volumes from different machines: GE, Philips, and
Siemens (for the first three). The last column gives the measure over all MRI volumes
taken together.



and CSF. Since, we deal with pure samples only, we do not include the lesions
in this analysis since these are affected by many factors such as the Partial
volume effects that we do not take into account for this study. The results are
presented in Table 4. As can be seen, the intensity normalization contributes
to a better relative scale mapping of various tissue types contributing to tissue
type separation in intensity space. The only discrepancy comes for the contrast
between WM:GM contrast in T2w scans. One possible reason can be the effect of
the global 98 percentile dynamic range mapping resulting in a range compression
for WM and GM.

(a) WM vs. GM (b) GM vs. CSF (c) WM vs. CSF

Fig. 4. Jeffrey Divergences between tissue types before (blue bar) and after (red bar)
Normalization. The other notations are the same as previous figures.

5 Conclusion and Future Work

In this work we investigated the efficacy of the intensity standardization proce-
dure of Nyul et. al. [3, 2] on multi-site multi-scanner data from multi-spectral
(T1, T2 and PD weighted) MRI volumes of patients with varying degrees of
MS lesion load. Utilizing the Jeffrey divergence criteria, we also verified whether
the assumptions of an underlying Gaussian distribution on different tissue types
made by various automatic tissue segmentation and visualization approaches
hold. Finally, we also studied the effect of the procedure on tissue separation
among different tissue types.

Our results demonstrate that intensity normalization has a significant role to
play in both enabling efficient tissue modeling and relative scale mapping. Ren-
dering the tissue intensity values in a standardized range enables verification of
the modeling and distributional assumptions made by many automatic image
analysis techniques. Further, the intensity normalization also results in more
homogenous intensity values for voxels of the same tissue type. Along with an
effective relative scale mapping, this also contributes to a better tissue type sep-
aration in intensity space. Further, these conclusions seem to hold across a range
of data from heterogenous sources with varying scanner types and, importantly,
with varying degrees of MS pathology in the brain.

Although we examined the overall behavior of the intensity normalization
procedure on MRIs of patients with varying degrees of MS lesion load, the natu-
ral extension of this analysis would be to explore its correlation with the amount
of lesion load. We plan to investigate this in future. Since most of the automatic
segmentation and visualization methods operate in multispectral tissue intensity
space, it would also be interesting to study quantitatively the effect of intensity
normalization on multispectral tissue intensity behavior and on tissue segmen-



tation. We also plan to extend our analysis to take this factor into account.
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