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Abstract. We present a fully automated framework for identifying mul-
tiple sclerosis (MS) lesions from multispectral human brain magnetic res-
onance images (MRIs). The brain tissue intensities and lesions are both
modeled using Markov Random Fields (MRFs) to incorporate local spa-
tial variations and neighborhood information. In this work, we model
all brain tissues, including lesions, as separate classes as opposed to the
common approach of modelling the lesions as outliers of the brain tissues.
A maximum probability estimate is obtained by arriving at the global
convergence of the MRFs using Simulated Annealing. Finally, probabil-
ity surface discontinuities due to noise and local intensity variations are
avoided by incorporating a spline based smoothing function following the
MRF modelling. The algorithm is validated on a set of real MRI brain
volumes of MS patients with widely varying lesion loads by comparing the
results against a silver standard derived from manual expert labellings.
The algorithm yields favorable results, including in the posterior fossa
where few methods have proved successful. Further, our algorithm yields
fewer false negatives than is usual in practice.
Keywords: MS lesion segmentation, MRFs, simulated annealing.

1 Introduction

Multiple sclerosis (MS) is a de-myelinating disease of the central nervous sys-
tem (CNS) where myelin, the insulation around a nerve fibre (axon), is attacked
resulting in focal MS lesions. MS is characterized by episodic, immunological at-
tacks on the CNS resulting in various neurological impairments. MRIs are critical
to the process of both studying the disease and developing therapies because it
permits visualising lesion formation with a very high sensitivity. Consequently,
the ability to detect and monitor lesion volumes and activity in brain MRIs is
very crucial to the process of measuring the burden of the disease. Automatic
lesion classification can lead to consistency in lesion detection, the elimination
of the subjectivity (or intra-rater variability), (inter-rater) variability, and the
reduction in the cost associated with manual labelling.

Over the years, various approaches have been proposed to perform automated
lesion detection from the brain MRIs with pathology, showing varied degrees of



success. As categorised by Harmouche [13], the principal techniques are based
on fuzzy reasoning [2], geometric models to determine lesion boundaries [3],
connected component analysis and deterministic annealing [4], artificial neural
networks [1], clustering techniques [6], atlas based methods [10] and contouring
approaches [11]. A common approach has been to model lesions implicitly as
outliers rather than explicitly including them in the tissue intensity model. One
of the more successful examples of detecting MS lesions using outlier detection
was proposed by van Leemput et. al. [5]. Other semi-automatic or interactive
methods have also been suggested. For instance, Lecoeur et. al., [12] propose a
method based on spectral gradients and graph cuts to detect lesions. A common
observation made by most of these approaches is the importance of incorpo-
rating local contextual tissue intensity information as very significant in lesion
identification. MRFs have also been used to model the neighborhood informa-
tion before. However, even when MRFs were used, they did not model the lesions
as classes explicitly. Some probabilistic approaches such as the one proposed by
Harmouche [13] have attempted to obtain a Bayesian model of the MS lesions
for different regions of the brain. However, they utilise a Maximum Likelihood
estimation using neighborhood information only after a labelling solution is ob-
tained. There are approaches that use expert heuristics to incorporate contextual
information (e.g. Francis [6]). Finally, very few methods have shown promise in
identifying the lesions in the posterior fossa where lesion intensities approach
that of the grey matter (GM) and the contrast between healthy tissue and the
lesions is greatly reduced.

In this paper, we aim at constructing an MRF model of multispectral MRI
(T1-weighted, T2-weighted and the proton density (PD) weighted image modal-
ities) tissue intensities for the whole brain including the posterior fossa (PF) by
incorporating voxel level spatial information in a standard anatomical space. In
contrast to the previous approaches, we explicitly model all the tissues of the
brain, including the lesions as classes. Further, simulated annealing is used to
obtain an optimal labelling solution. Although simulated annealing requires a
higher computational time, it finds the mode of the distribution, so that samples
from the mode are from the global optimum. We then validate our results using
both the κ coefficient and the false positive and false negative rates. In particu-
lar, we obtain a low rate of false negatives. Our results are compared against the
published values of Shiee et. al [17] and van Leemput et. al. [5]. The technique
we suggest performs better than the others reviewed here on the data sets we
worked on.

Our principal contributions are constructing a MRF model of the multispec-
tral MRI tissue intensities for the whole brain, including the posterior fossa. We
explicitly model the lesions also as tissue classes, in contrast to most approaches
which consider them outliers of the healthy brain tissues. Further, we use gradi-
ent information in addition to the intensity histogram information, which allows
us to detect the smaller sub-cortical lesions better.

The rest of the paper is organized as follows: Section 2 briefly details the MRF
approach used in this work along with the learning algorithm utilised. Section



3 then presents qualitative and quantitative empirical results on ten brain MRI
volumes. Section 4 highlights the main observations and concludes with a brief
discussion on the future work.

2 MRF Tissue Classification

Our goal is to classify each MRI voxel as belonging to one of the following six
classes: Background (Bk), White Matter (WM), Grey Matter (GM), Cerebral
Spinal Fluid (CSF), T1-hypointense lesions (T1les) and T2-hyperintense lesions
(T2les). These two lesion types can be characterized as follows: T2les are hyper-
intense as compared to the healthy WM tissues in the T2 modality and T1les

are hypointense as compared to the surrounding healthy white matter (WM)
tissues in the T1 image modality. T1 lesions are a subset of the T2 hyperintense
lesions, and are presumed to be the tissue destructive ones.

Our approach is divided into two parts. In the first part, distributions needed
for MRF modelling are obtained from pre-labeled training volumes. Next, distri-
butions learned from the training volumes are used in classifying new volumes.

2.1 Training

Given the MRI image modalities, the intensity of voxel vi in the MRI volume
is denoted as a three dimensional vector Ii = (IT1

i , IT2
i , IPD

i ) with the elements
corresponding to the voxel intensities in T1-weighted, T2-weighted and PD-
weighted modalities respectively. Let each voxel vi be modelled as a random
variable fi and S be a collection of sites, where each site is a voxel. Each fi can
take one of the six labels corresponding to the classes above.

Fig. 1. (left)The histograms of the white matter voxels in T2 image and (middle) the
grey matter voxels and (right) the CSF voxels. We see that the histograms fit the
multivariate Gaussian model quite well.

In the training phase, given the expert labelled set of R images, I(k), k ∈
0, . . . , R − 1, we plot the intensities of the voxels belonging to the six classes
for all three modalities. Our observations as shown in Fig. 1 confirms that the
histogram of the intensities of the healthy brain tissues can be approximated as



multivariate Gaussians. Further, the distribution of intensities of lesions, though
a little different (they are bimodal) can be made to fit the multivariate Gaussian
distribution by dividing the lesions that are visible only on T2 volumes and those
observable in both T1 and T2 volumes into T2les and T1les respectively. In Fig.
2, we see that there is perceptible difference between the different Gaussians and
their peaks, allowing the algorithm to distinguish between various classes based
on the intensities. Consequently, we fit multivariate Gaussians to each tissue
class in the histograms and then compute the mean, µfi

, of the intensities of
classes in the multispectral intensity space, along with covariance matrices Σfi

.

Fig. 2. The Gaussians fitted to the histograms of the volumes in the T1 (left), T2
(middle) and PD (right) modalities. We can see that there are considerable differences
between the histograms of the classes [13].

2.2 Markov Random Field Tissue Classification

The choice of MRFs is motivated by the fact that tissues tend to occur and
agglomerate in locally contiguous patterns. Consequently, local tissue informa-
tion is of very high importance in the detection and location of lesions and local
tissue information influences the accurate classification of images. Given this
predilection, MRFs, that depend on local neighbourhood information to cluster
voxels to their classes, are a natural choice.

Given a new image to classify, we model the entire volume as an instance
of an MRF and the goal is to obtain the best configuration of labels over all
the voxels in the image. The set of classes is denoted by L = {l1, . . . , lM}. In
our case, we have M = 6, with L = {Bk,WM,GM,CSF, T1les, T2les}. Let the
vector f = (f1, . . . , fn) denote a label configuration on the brain volume, where
n is the number of voxels in the MRIs. A random instantiation of this vector
hence induces a random field on S. Let F = {(f1, . . . , fn)|fi ∈ L, i ∈ S} be the
set of all such possible configurations. We define a homogeneous and isotropic



neighbourhood 1 system N = {Ni, i ∈ S} such that Ni denotes neighbours of
the voxel at i, and i ∈ Nj ⇐⇒ j ∈ Ni. Then by standard definitions [14] a
random field f on S is an MRF on S with respect to N iff P (f) > 0, ∀f ∈ F and

P (fi|fS−{i}) = P (fi|fNi
). (1)

The tissue class membership probability of voxels depends on the neighborhood.

C

F

R
L

T

B

Bk

T − Top
B − Bottom
F − Front
Bk − Back
C − Centre
L − Left
R − Right

Fig. 3. The 7-voxel clique containing the voxel of interest. The clique contains its four
in-slice neighbours and the two neighbours from preceeding and succeeding slices.

According to the Hammersley-Clifford theorem [14], this MRF is equivalent
to a Gibbs distribution. The probability of any configuration f takes the form:

P (f) =
1

∑

f∈F exp(− 1
T

U(f))
exp(−

1

T
U(f)) (2)

where T , the temperature, is an optimisation parameter and U(f) =
∑

s Vs(f),
the sum of clique potentials s ∈ G. A clique G is a subset of sites in S and can
consist of a single site, or a pair of neighbouring sites or a triple of neighbouring
sites and so on. We choose the one voxel clique and the seven voxel cliques,
(shown in Fig. 3) because the energy of these two cliques dominates the 2 voxel,
3 voxel and 5 voxel cliques used by Harmouche [13]. The energy U(f) is given by

U(f) =
n

∑

i=1



(Ii − µfi
)T Σ−1

fi
(Ii − µfi

) +
∑

∀j,j∈Ni

α(µfi − Ij)
2 + βm(fi)



 , (3)

where µfi
is the mean intensity value of the voxels belonging to the class fi in

all the three modalities in the training set, Σfi
is the covariance matrix of the

class given by fi, m(fi) is the number of voxels that belong to the class of fi in
the 7 neighbourhood of voxel i and α and β are MRF parameters that determine
the attraction between like intensities and similar clusters respectively. α is the
weight of the gradient in 3D. The dimensions of the voxels are not uniform (in

1 The homogeneity implies positional independence in the neighbourhood and
isotropism implies orientation independence.



our case, the voxels measure 1mm× 1mm× 3mm). Since we are computing the
gradient for non-uniform voxels, it is useful to weight the gradient accordingly, to
eliminate errors due to differences in voxel dimensions. βm(fi) may be thought
of as the regularisation of the gradient term. Both α and β are determined
experimentally from the training set. The term (Ii − µfi

)T Σ−1
fi

(Ii − µfi
) can be

thought of as the energy of the voxel itself (or the one voxel clique energy) and
the term

∑

j,j∈Ni
α(µfi − Ij)

2 + βm the energy contributed to the voxel by its
neighbours in the clique (seven voxel clique energy). In order to maximise P (f),
we use simulated annealing [16] to minimise U(f), where

fmin = argminf∈FU(f). (4)

3 Experiments and Results

3.1 Image Preprocessing and Training

Before the images can be used for training, the brain MRI volumes need to be
corrected for acquisition artefacts and co-registered into a common space. Image
preprocessing includes bias-field inhomogeneity correction using N3 [7], intra-
subject registration of the multispectral volumes [8], extraction of non-brain
regions from the MRI (brain parenchyma) [9] and intensity range normaliza-
tion. The intra-subject registration of the volumes involves registering the three
modalities to the T2 space before any further processing is done, either manually
or automatically. Finally, for each patient, the lesions were manually segmented
by 5 expert raters resulting in a silver standard such that any lesion voxel is the
result of a consensus among the experts.

The algorithm was trained on 14 real MRI brain volumes acquired from
different MS patients. For all subjects, brain MRI scans were acquired on a 1.5T
Philips Gyroscan ACS II scanner using a body coil transmitter and a quadrature
head-coil receiver. Fifty contiguous 3mm thick T2 and PD weighted images were
acquired parallel to the callosal line using a dual turbo-spin-echo sequence with
repetition time (TR) = 2075 ms, echo time (TE) = 31.6 and 90 ms, 256 ×
256 mm field of view. T1 weighted images were acquired with the same matrix
using a 3D gradient echo sequence (TR = 35ms, TE = 10.2 ms). Each MRI
volume was corrected for image inhomogeneity and T2 and PD weighted volumes
were registered to the T1-weighted volumes using a mutual information based
approach. To ensure sufficient diversity in our training set, we chose subjects
having with different amounts of lesion load, with 5 volumes having lesions less
than 5cc, 5 volumes having lesion load between 5cc and 15cc, and 4 volumes
with lesion load between 15cc and 70cc.

3.2 Classification and Post-processing

Our classification algorithm was tested on 10 MRI brain volumes of real patients
with MS. The validation set had lesion loads varying from 6cc to 71cc.



Fig. 4. (a) (b) (c) (d)
In all the above figures, we have (a) Central Slice of a T2-weighted MRI image of a
person suffering from MS (b) the same slice in the T1-weighted image (c) the lesions
labelled by experts and (d) lesions labelled by our algorithm. In the top row of figures,
we have low lesion load. The algorithm manages to localise lesions accurately with
κ = 0.69. In the central row of figures, there are a large number of sub-cortical lesions.
However, the algorithm did manage to locate them reasonably correctly with κ = 0.72.
Finally, in the bottom row of figures, there is heavy lesion load in the slice, but the
algorithm detects them fairly accurately. It also managed to localise the smaller lesions
away from the ventricles accurately. The κ value here is 0.76.



The solution proposed by simulated annealing led to a labelling of each voxel
in each brain volume. In some cases, due to noise and intensity aberrations,
it was found that voxels in the middle of lesions were not correctly labelled as
lesions. In order to correct these errors, we use smoothing by b-splines since they
are good surface approximators. The technique has been applied as in [15]. The
general form of a B-spline surface of a given set of data points pk is given by

x(u, v) =
N−1
∑

i=0

Bi(u, v)di, (5)

where Bi(u, v) are the spline basis vectors and di are the coefficients. We need
to minimise the functional

F =
∑

k

‖ x(uk, vk) − pk ‖2 (6)

to get the surface. We have implemented this technique as suggested in [15]. In
our case, let us assume that a voxel V is flagged as a lesion. We choose square
grids of 7 × 7 voxels centred at V in the axial plane and a grid of 3 × 3 in the
coronal and sagittal planes since the voxel size is 1× 1× 3mm. We assume that
the lesion probabilities are themselves samples of the surfaces to be created, and
generate control points at the corners of the squares. Then we smooth over the
entire plane, approximating the other probabilities inside the squares as best as
possible using the surface. At the location of the voxels, new probabilities are
the resampled values of the continuous surface generated by the spline.

Fig. 5. (a) (b) (c) (d)
(a)Posterior fossa in the T2-weighted image of a patient with MS, (b) the same slice
in the T1-weighted image, (c) the lesions labelled by the experts and (d) the lesions
labelled by our algorithm image. While detection of lesions is difficult in the posterior
fossa, our algorithm captured at least some lesions accurately with κ = 0.49.

3.3 Qualitative Results

Figs. 4, 5 and 6 present some qualitative results from five different slices, from
different brain volumes with varying types of lesion loads. These include: (a) a



slice of a volume with heavy lesion load (bottom row Fig. 4), (b) a slice with
low lesion load (top row Fig. 4), (c) a slice where there are sub-cortical lesions
present (middle row Fig. 4), (d) a supra-ventricular slice with considerable lesion
load (Fig. 6), and (e) a slice with lesions in the posterior fossa (Fig. 5).

The algorithm manages to find lesions even when they are sparse and only
a few voxels in size as seen in top row of Fig. 4. Our detection of lesions is in
consonance with the silver standard, even if there is a slight overestimate of the
lesions at the top of the right ventricle in comparison with the silver standard.

In the bottom row of Fig. 4, one can observe that there is a considerable
amount of lesion in the subject. In such cases, smaller lesions tend to be ignored
by many commonly employed algorithms. In our case, it may be seen in Fig. 4,
that not only are the larger lesions localised reasonably well, but also the two
smaller lesions on either side of the ventricles have been identified correctly.

In Fig. 6, we have chosen to highlight a supra ventricular slice. Algorithms
generally perform well in the central slices where the lesions often tend to aggre-
gate around the ventricles. Our algorithm also detects these lesions accurately.

As mentioned earlier, proper detection of lesions in the posterior fossa is
difficult due to differences in lesion intensities and contrast, compared to the
cerebrum. Fig. 5 shows the lesions detected by our algorithm in the posterior
fossa and we observe that they coincide with those detected by experts.

Sub-cortical lesions are often difficult to detect since they are very similar
other brain tissue, apart from being very small. In the middle row of Fig. 4, we
show that our algorithm is able to detect the cortical lesions as well, with our
results are in agreement with the silver standard. In addition, our algorithm is
able to detect peri-ventricular lesions accurately; however, in this case, it may be
observed that our technique does overestimate the lesions near the boundaries.

Fig. 6. (a) (b) (c) (d)
(a) Upper brain slice of a T2-weighted MRI image of a person suffering from MS (b) the
same slice in the T1-weighted image (c) the lesions labelled by experts and (d) lesions
labelled by our algorithm. Although we choose a slice near the top of the ventricles,
the algorithm still functions well as may be noticed with κ = 0.72.



3.4 Quantitative Results

Having described our results qualitatively, we compute the accuracy of our results

using the traditional κ statistic (or Dice Similarity Coefficient) κ = 2(A∩B)
A+B

where
A is the set of voxels labelled by experts as lesions, and B is the set of voxels
labelled as lesion by our algorithm. Hence, the κ factor may be thought as the
degree of agreement between the algorithm’s and raters’ lesion label assignment.

The results in Fig. 4 demonstrate qualitatively that the lesions identified by
the algorithm coincide with the lesions labelled by the experts. Quantitatively,
Table 1 shows the lesion κ scores for ten patients from the MNI database. These
patients exhibited significant variation in lesion load. The mean value of κ = 0.69
indicates considerable relative agreement with the silver standard. Van Leemput
et. al., [5] work with 50 real cases, which were rated by two manual experts.
Their algorithm yielded a κ value of 0.47 with the first expert and a value of κ

value of 0.51 with the second. On the other hand, our mean κ value compares
favourably against the results obtained by both van Leemput et. al, [5] and
Harmouche [13], the latter obtaining a mean κ of 0.61. Shiee et. al., [17] used
both real and simulated data. With simulated data, their κ value for all classes is
0.677. They also used 10 real volumes (modalities were FLAIR, T1 and T2) and
obtained an average κ = 0.51 with the expert raters for the entire brain. It is
important to note that the κ values reported in the studies reflect the accuracy of
segmentation of all the classes, and not merely lesions. Shiee. et. al., also report
a κ value of 0.53 for lesions in 8 volumes, where the output of their algorithm
was compared against the lesions detected by a single expert rater. Our κ value
refers only to the segmentation of MS lesions, where there is often a lack of
consensus even among experts, particularly in the vicinity of the boundaries.

Patient 1 2 3 4 5 6 7 8 9 10 Mean

κ with PF 0.64 0.76 0.77 0.72 0.69 0.64 0.74 0.63 0.62 0.67 0.69

κ without PF 0.67 0.77 0.78 0.74 0.71 0.66 0.75 0.64 0.64 0.69 0.71

Table 1. The κ values comparing our results to the experts’ consensus (the silver
standard with and without the posterior fossa (PF)).

While the κ statistic is a reasonable measure of similarity between the al-
gorithm and the experts, it provides no information about the kind of errors
generated by the algorithm, nor does it possess any information about the local-
isation of the errors. Consequently, we also compute the false positive and the
false negative rates, so that we may measure the accuracy of the algorithm.

The false positive rate is given by fp =
# false positives

# (false positives + true negatives)

and the false negative rate is given by fn =
# false negatives

# (true positives + false negatives)
.

Table 2 presents the false negative rate and the false positive rate scores for all



the ten volumes whose κ value we computed in Table 1. This improves the utility
of the statistics shown in the paper.

Patient 1 2 3 4 5 6 7 8 9 10 Mean

False +ve Rate 0.003 0.002 0.001 0.004 0.003 0.0004 0.0006 0.0003 0.001 0.005 0.002

False -ve Rate 0.13 0.06 0.05 0.06 0.09 0.19 0.11 0.14 0.12 0.06 0.10

Table 2. The false positive and false negative rates for lesions over the ten volumes.

As we can see from Table 2, the rate of false negatives is rather small, never
exceeding 20% of the total number of lesion voxels. This shows that we do
manage to capture most lesions accurately. The false positive statistic is quite
low as well, however this statistic is subject to misinterpretation. In general, the
number of lesions is seldom greater than 1% of the brain volume (in terms of
voxel). Consequently, the number of true negatives is far greater than the number
of false poitives. As a result, the false positive rate is consistently low, regardless
of the absolute number of false positives. The proposed approach does, in fact,
produce some false positive classification results relative to the silver standard.
However, recall that our silver standard reflects the consensus among experts.
As such, the silver standard tends to underestimate the number of lesions and
generally reflects the most conservative classification result. Our false positives
are generally small as in Fig. 4 or occur at the borders of the lesions, where there
is considerable disagreement even among experts.

4 Conclusions and Future Work

In this paper, we present an automatic tissue classification scheme based on
Markov Random Fields that probabilistically models the local spatial relation-
ships between voxels and their neighbours. Our approach explicitly builds distri-
butions for lesions as separate tissue classes, as opposed to considering them as
outliers. We adapt simulated annealing techniques to obtain the required MRF
parameters. Our framework is evaluated on a dataset of 10 full MRI volumes
of brain images acquired from real patients suffering from MS. The data re-
flects patients at various stages of the disease, thus exhibiting various degrees
of lesion loads. This lies in contrast to many approaches in the literature, which
post results on simulated images or focus thier findings on specific slices in brain
volumes. Our results indicate that the algorithm produces high lesion kappas rel-
ative to a silver standard, and relatively low false positive and negative rates. In
addition, the results are consistent with expert labellings in the posterior fossa,
a brain region generally considered “difficult” to correctly segment by experts.

Several improvements are in the horizon for this technique. Different models
for the different regions of the brain as suggested by Harmouche [13] might help
in capturing local variations better. We also expect to integrate the smoothing



function completely into the classification scheme, something which should help
us overcome the drawbacks of over-estimation of lesions.
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