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Abstract. We propose a new learning algorithm for the set covering machine
and a tight data-compression risk bound that the learner can use for choosing the
appropriate tradeoff between the sparsity of a classifier and the magnitude of its
separating margin.

1 Introduction

There exists a wide spectrum of different leaning strategies currently used by learning
algorithms to produce classifiers having good generalization. At one end of the spec-
trum, we have the set covering machine (SCM), proposed by Marchand and Shawe-
Taylor (2002), that tries to find the sparsest classifier having few training errors. At
the other end of the spectrum, we have the support vector machine (SVM), proposed by
Boser et. al. (1992), that tries to find the maximum soft-margin separating hyperplane on
the training data. Since both of these learning machines can produce classifiers having
good generalization, it is worthwhile to investigate if classifiers with improved general-
ization could be found by learning algorithms that try to optimize a non-trivial function
that depends on both the sparsity of a classifier and the magnitude of its separating
margin.

There seems to be a widespread belief that learning algorithms should somehow
try to find such a non-trivial margin-sparsity trade-off. For example, to find a sparser
SVM (but with a smaller margin), Bennett (1999) and Bi et. al. (2003) have proposed
to minimize aǹ 1-norm functional (instead of the traditional`2-norm) and have found
that, indeed, the sparser SVM sometimes had better generalization. Therefore, from this
SVM perspective, we should consider algorithms that minimizes an`β-norm functional
for any β ∈ [0, 2]. In theβ = 2 limit, we obtain the SVM with the largest possible
separating margin (without considering its sparsity). In theβ = 0 limit, we would
obtain the sparsest SVM (without considering the magnitude of its separating margin).
This parameterβ would then control the margin-sparsity trade-off of the final classifier.
Unfortunately, this optimization problem is currently efficiently solvable only forβ = 2
and1.

This computational difficulty does not arise (so abruptly) if, instead, we consider
margin-sparsity trade-off learning algorithms from the SCM perspective. Indeed, the
learning algorithm for the SCM proposed by Marchand and Shawe-Taylor (2002) con-
sists of a set covering greedy heuristic that, at each greedy step, appends, to a conjunc-
tion, the Boolean-valued feature that covers the largest number of negative examples



2

without making too many errors on the positive examples. If, in addition, we force
the algorithm to use only features having the property that all the (remaining) train-
ing examples are at least a distanceγ from its decision surface, we are assured that a
conjunction of such features will give a classifier having no training examples within a
distanceγ of its decision surface. In theγ = 0 limit, the goal of the learner is to produce
the sparsest SCM without considering the magnitude of its separating margin (as in the
original SCM algorithm). For finiteγ, we will achieve a separating margin of at leastγ
at the expense of having more features in the SCM. Hence,γ is a parameter that controls
the margin-sparsity trade-off of the final classifier without introducing any substantial
computational difficulty. We therefore propose, in Section 3, a margin-sparsity trade-off
learning algorithm for the SCM which was inspired by this simple idea.

The widespread belief that learning algorithms should try to find a non-trivial margin-
sparsity trade-off is, to our knowledge, not currently supported by a generalization error
bound (also called risk bound) that explicitly depends onboththe sparsity of a classifier
and the magnitude of its separating margin. However, both sparsity and margin can be
considered as different forms of data-compression. Indeed, sparsity is a form of data
compression known as sample-compression (Littlestone and Warmuth, 1986) since it
means that a classifier can be reconstructed from a small subset of the training data.
Less obviously, the magnitude of the separating margin of a classifier can also be con-
sidered as a form of data compression since it means that there exists a small code that
can specify a “good” location for the classifier’s decision surface. For the SCM of Marc-
hand and Shawe-Taylor (2002), eachdata-dependent ballfeature is identified by two
training points: acenterand aborder (to define the radius of the ball). In section 3, we
propose instead to code the radius of each ball by amessage string. Hence, the existence
of a large margin of “equally good radius values” for a ball will imply the existence of a
short code for its radius. With this new version of the SCM, we therefore identify each
classifier by two distinct information sources: acompression setwhich consists of the
center of each ball in the classifier and amessage stringwhich encodes the radius value
of each ball.

In section 2 of this paper, we therefore propose a tight data-compression risk bound
that depends explicitly on these two information sources. This bound therefore exhibits
a non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize
on the training data. In contrast with other sample-compression bounds, the proposed
bound is valid for any compression set-dependent distribution of messages and, as we
argue, permits the usage of smaller message strings which, in turn, can help reduce
significantly the size of the risk bound. We then show, in section 3, how we can apply
this risk bound to the SCM by providing an appropriate compression set-dependent
distribution of messages. Finally, we show, on natural data sets, that the new SCM
algorithm compares favorably to the SCM algorithm of Marchand and Shawe-Taylor
(2002) and we also show that the data-compression risk bound is an effective guide for
choosing the proper margin-sparsity trade-off of a classifier.
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2 A Data-Compression Risk Bound

We consider binary classification problems where the input spaceX consists of an

arbitrary subset ofRn and the output spaceY = {−1, +1}. An examplez def= (x, y) is
an input-output pair wherex ∈ X andy ∈ Y. We are interested in learning algorithms
that have the following property. Given a training setS = {z1, . . . , zm} of m examples,
the classifierA(S) returned by algorithmA is described entirely by twocomplementary
sources of information: a subsetzi of S, called thecompression set, and amessage
string σ which represents the additional information needed to obtain a classifier from
the compression setzi.

Given a training setS, the compression setzi is defined by a vectori of indices

i def= (i1, i2, . . . , i|i|) with ij ∈ {1, . . . ,m} ∀j and i1 < i2 < . . . < i|i| and where
|i| denotes the number of indices present ini. Hence,zi denotes theith example ofS
whereaszi denotes the subset of examples ofS that are pointed by the vector of indices
i defined above. We will usei to denote the set of indices not present ini. Hence, we
haveS = zi ∪ zi for any vectori ∈ I whereI denotes the set of the2m possible
realizations ofi.

The fact that any classifier returned by algorithmA is described by a compression
set and a message string implies that there exists areconstruction functionR, associated
with A, that outputs a classifierR(σ, zi) when given an arbitrary compression setzi ⊆
S and message stringσ chosen from the setM(zi) of all distinct messages that can
be supplied toR with the compression setzi. It is only when such aR exists that the
classifier returned byA(S) is alwaysidentified by a compression setzi and a message
stringσ.

The perceptron learning rule and the SVM are examples of learning algorithms
where the final classifier can be reconstructed solely from a compression set (Graepel.
et. al.,2000, 2001). In contrast, the reconstruction function for SCMs needs both a com-
pression set and a message string. Later, we will see how the learner can trade-off the
compression set size with the length of the message string to obtain a classifier with a
smaller risk bound and, hopefully, a smaller true risk.

We seek a tight risk bound for arbitrary reconstruction functions that holds uni-
formly for all compression sets and message strings. For this, we adopt the PAC setting
where each examplez is drawn according to a fixed, but unknown, probability distribu-
tion D onX × Y. The riskR(f) of any classifierf is defined as the probability that it
misclassifies an example drawn according toD:

R(f) def= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

where I(a) = 1 if predicatea is true and0 otherwise. Given a training setS =
{z1, . . . , zm} of m examples, theempirical riskRS(f) on S, of any classifierf , is
defined according to:

RS(f) def=
1
m

m∑

i=1

I(f(xi) 6= yi)
def= E(x,y)∼SI(f(x) 6= y)

Let Zm denote the collection ofm random variables whose instantiation gives a train-
ing sampleS = zm = {z1, . . . , zm}. Let us denotePrZm∼Dm(·) byPZm(·). To obtain
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the tightest possible risk bound, we fully exploit the fact that the distribution of classi-
fication errors is a binomial. The binomial tail distributionBin( k

m , r) associated with a
classifier of (true) riskr is defined as the probability that this classifier makes at mostk

errors on a test set ofm examples:Bin
(

k
m , r

) def=
∑k

i=0

(
m
i

)
ri(1− r)m−i.

Following Langford (2005) and Blum and Langford (2003), we now define thebi-
nomial tail inversionBin

(
k
m , δ

)
as the largest risk value that a classifier can have while

still having a probability of at leastδ of observing at mostk errors out ofm examples:

Bin
(

k

m
, δ

)
def= sup

{
r : Bin

(
k

m
, r

)
≥ δ

}

From this definition, it follows thatBin (RS(f), δ) is thesmallestupper bound, which
holds with probability at least1−δ, on the true risk of any classifierf with an observed
empirical riskRS(f) on a test set ofm examples:

PZm

{
R(f) ≤ Bin

(
RZm(f), δ

)}
≥ 1− δ ∀f (1)

Note that the quantifier∀f appearsoutsidethe probabilityPZm{·} because the bound
Bin (RS(f), δ) does not holdsimultaneously(and uniformly) for all classifiersf mem-
ber of some predefined classF . In contrast, the proposed risk bound of Theorem 1
holds uniformly for all compression sets and message strings.

The proposed risk bound is a generalization of the sample-compression risk bound
of Langford (2005) to the case where part of the data-compression information is given
by a message string. It also has the property to reduce to the Occam’s razor bound
when the compression setzi vanishes. The idea of using a message string as an ad-
ditional source of information was also used by Littlestone and Warmuth (1986) and
Ben-David and Litman (1998) to obtain a sample-compression bound looser than the
bound presented here. Moreover, in contrast with these bounds, Theorem 1 applies to
any compression set-dependent distribution of messagesPM(zi) satisfying:

∑

σ∈M(zi)

PM(zi)(σ) ≤ 1 ∀zi (2)

and any prior distributionPI of vectors of indices satisfying:
∑

i∈I
PI(i) ≤ 1 (3)

Theorem 1. For any reconstruction functionR that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distributionPI of vectors of
indices, for any compression set-dependent distribution of messagesPM(zi), and for
anyδ ∈ (0, 1], we have:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤

Bin
(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≥ 1− δ
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where, for any training setzm, Rzi
(f) denotes the empirical risk of classifierf on the

examples ofzm that do not belong to the compression setzi.

Proof. Consider:

P ′ def= PZm

{
∃i ∈ I : ∃σ ∈M(Zi) : R(R(σ,Zi)) >

Bin
(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

To prove the theorem, we show thatP ′ ≤ δ. SincePZm(·) = EZi
PZi|Zi

(·), the union
bound and Equations 1, 2, and 3 imply that we have:

P ′ ≤
∑

i∈I
EZi

∑

σ∈M(Zi)

PZi|Zi

{
R(R(σ,Zi)) > Bin

(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≤
∑

i∈I
EZi

∑

σ∈M(Zi)

PI(i)PM(zi)(σ)δ ≤ δ

The risk bound of Theorem 1 appears to be as tight as it possibly can. Indeed, the
proof of Theorem 1 contains three inequalities. The last two inequalities come from
Equations 1, 2, and 3 and cannot be improved. The first inequality comes from the
application of the union bound for all the possible choices of a compression subset of
the training set and is unavoidable for statistically independent training examples.

It is important to note that, oncePI and PM(zi) are specified, the risk bound
of Theorem 1 for classifierR(zi, σ) depends on its empirical riskand on the prod-

uct PI(i)PM(zi)(σ). However,ln
(

1
PI(i)PM(zi)

(σ)

)
is just the amount of information

needed to specify a classifierR(zi, σ) once we are given a training set and the pri-
orsPI andPM(zi). The ln(1/PI(i)) term is the information content of the vector of
indicesi that specifies the compression set and theln(1/PM(zi)(σ)) term is the infor-
mation content of the message stringσ. Consequently the bound of Theorem 1 specifies
quantitatively how much training errors learning algorithms should trade-off with the
amount of information needed to specify a classifier byi andσ.

Any bound expressed in terms of the binomial tail inversion can be turned into
a more conventional and looser bound by inverting a standard approximation of the
binomial tail such as those obtained from the inequalities of Chernoff and Hoeffding.
In this paper, we make use of the following approximations (provided here without
proof) for the binomial tail inversion:

Lemma 1. For any integerm ≥ 1 andk ∈ {0, . . . ,m}, we have:

Bin
(

k

m
, δ

)
≤ 1− exp

(
−1

m− k

[
ln

(
m

k

)
+ ln

(
1
δ

)])
(4)

≤ 1
m− k

[
ln

(
m

k

)
+ ln

(
1
δ

)]
(5)
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Therefore, these approximations enable us to rewrite the bound of Theorem 1 into
the following looser (but somewhat clearer and more conventional) form:

Corollary 1. For any reconstruction functionR that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distributionPI of vectors of
indices, for any compression set-dependent distribution of messagesPM(zi), and for
anyδ ∈ (0, 1], we have:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤

1− exp

(
−1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)])}
≥ 1− δ (6)

and, consequently:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤

1
m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)]}
≥ 1− δ (7)

whered
def= |i| is the sample compression set size of classifierR(σ,Zi) and k

def=
|i|Rzi

(R(σ,Zi)) is the number of training errors that this classifier makes on the ex-
amples that are not in the compression set.

It is now quite clear from Corollary 1 that the risk bound of classifierR(σ,Zi) is small
when its compression set sized and its numberk of training errors are both much
smaller than the numberm of training examples. These are uniform bounds over a set
of data-dependent classifiers defined by the reconstruction functionR. In contrast, VC
bounds (Vapnik 1998) and Rademacher bounds (Mendelson, 2002) are uniform bounds
over a set of functions definedwithout reference to the training data. Hence, these latter
bounds do not apply to our case.

The bound of Equation 6 is very similar to (and slightly tighter than) the recent
bound of Marchand and Sokolova (2005).

The looser bound of Equation 7 is similar to the bounds of Littlestone and Warmuth
(1986) and Floyd and Warmuth (1995) when the setM of all possible messages is
independent of the compression setzi and when we choose:

PM(zi)(σ) = 1/|M| ∀σ ∈M (8)

PI(i) =
(

m

|i|
)−1

(m + 1)−1 ∀i ∈ I (9)

But other choices that give better bounds are clearly possible. For example, in the fol-
lowing sections we will use:

PI(i) =
(

m

|i|
)−1

ζ(|i|) with ζ(a) def=
6
π2

(a + 1)−2 ∀a ∈ N (10)
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which satisfies the constraint of Equation 3 since
∑∞

i=1 i−2 = π2/6. This choice forPI
has the advantage that the risk bounds do not deteriorate too rapidly when|i| increases.

In the next section, we show how we can apply the risk bounds of Theorem 1 and
Corollary 1 to the SCM. For this task, we will provide choices for the distribution of
messagesPM(zi) which are more appropriate than the simplest choice given by Equa-
tion 8. Indeed, we feel that it is important to allow the set of messages to depend on the
sample compressionzi since it is conceivable that for somezi, very little extra informa-
tion may be needed to identify the classifier whereas for some otherzi, more informa-
tion may be needed. Without such a dependency onzi, the set of possible messagesM
would be unnecessarily large and would loosen the risk bound. But, more importantly,
the risk bound would not depend on the particular messageσ used. However, we feel
that it is important for learning algorithms to be able to trade-off the complexity (or
information content) ofi with the complexity ofσ. Hence, a good risk bound should
somehow indicate what the proper trade-off should be.

3 Application to the Set Covering Machine

Recall that the task of the SCM (Marchand and Shawe-Taylor 2002) is to construct the
smallest possible conjunction of (Boolean-valued) features. We discuss here only the
conjunction case. The disjunction case is treated similarly just by exchanging the role
of the positive with the negative examples.

For the case ofdata-dependent balls, each feature is identified by a training exam-
ple, called acenter(xc, yc), and a radiusρ. Given any metricd, the outputh(x) on any
input examplex of such a feature is given by:

h(x) =
{

yc if d(x,xc) ≤ ρ
−yc otherwise

3.1 Coding Each Radius with a Training Example

Marchand and Shawe-Taylor (2002) have proposed to use another training example
xb, called aborder point, to code for the radius so thatρ = d(xc,xb). In this case,
given a compression setzi, we need to specify the examples inzi that are used for a
border point without being used as a center. As explained by Marchand and Shawe-
Taylor (2002), no additional amount of information is required to pair each center with
its border point whenever the reconstruction functionR is constrained to produce a
classifier that always correctly classifies the compression set. Furthermore, as argued
by Marchand and Shawe-Taylor (2002), we can limit ourselves to the case where each
border point is a positive example. In that case, each messageσ ∈ M(zi) just needs to
specify the positive examples that are a border point without being a center. Letn(zi)
andp(zi) be, respectively, the number of negative and the number of positive examples
in compression setzi. Let b(σ) be the number of border point examples specified in
messageσ and letζ(a) be the same as defined in Equation 10. We can then use:

PM(Zi)(σ) = ζ(b(σ)) ·
(

p(zi)
b(σ)

)−1

(11)
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since, in that case, we have for any compression setzi:

∑

σ∈M(zi)

PM(zi)(σ) =
p(zi)∑

b=0

ζ(b)
∑

σ:b(σ)=b

(
p(zi)
b(σ)

)−1

≤ 1

With this distributionPM(zi), the risk bound of Theorem 1 is tighter than the one pro-
vided by Marchand and Shawe-Taylor (2002) because of the more efficient treatment
of the training errors made by using the binomial tail inversion.

3.2 Coding Each Radius with a Small Message String

Another alternative, not considered by Marchand and Shawe-Taylor (2002), is to code
each radius value by a message string having the fewest number of bits. In this case,
no border points are used and the compression set only consists of ball centers. Con-
sequently, the risk bounds of Theorem 1 and Corollary 1 will be smaller for classifiers
described by this method provided that we do not use to many bits to code each ra-
dius. We expect that this will be the case whenever there exists a large interval[r1, r2]
(i.e., a margin) of radius values such that no training examples are present between the
two concentric spheres, centered onxc, with radiusr1 andr2. The best radius value in
that case will be the one that has the shortest code. A similar idea was applied by von
Luxburg et. al. (2004) for coding the maximum-margin hyperplane solution for support
vector machines.

Hence, consider the problem of coding a radius valuer ∈ [r1, r2] ⊂ [0, R] where
R is some predefined value that cannot be exceeded and where[r1, r2] is an interval of
“equally good” radius values3. We propose the following diadic coding scheme for the
identification of a radius value that belongs to that interval. Letl be the number of bits
that we use for the code. We adopt the convention that a code ofl = 0 bits specifies the
radius valueR/2. A code ofl = 1 bit either specifies the valueR/4 (when the bit is 0)
or the value3R/4 (when the bit is 1). A code ofl = 2 specifies one of the following
values:R/8, 3R/8, 5R/8, 7R/8. Hence, a code ofl bits specifies one value among the
setΛl of radius values:

Λl
def=

{
2j − 1
2l+1

R

}2l

j=1

Given an interval[r1, r2] ⊂ [0, R] of radius values, we take the smallest numberl of
bits such that there exists a radius value inΛl that falls in the interval[r1, r2]. In this
way, we will need at mostblog2(R/(r2− r1))c bits to obtain a radius value that falls in
[r1, r2].

Hence, to specify the radius for each center of a compression set, we need to specify
the numberl of bits and al-bit string s that identifies one of the radius values inΛl.
Therefore, the message stringσ sent to the reconstruction functionR, for a compression
setzi, consists of the set of pairs(li, si) of numbers needed to identify the radius of
each centeri ∈ i. The risk bound does not depend on how we actually codeσ (for

3 By a “good” radius value, we mean a radius value for a ball that would cover many negative
examples and very few positive examples (see the learning algorithm).
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some receiver). It only depends on the a priori probabilities assigned to each possible
realization ofσ. We choose the following distribution:

PM(Zi)(σ) def= PM(Zi)(l1, s1, . . . , l|i|, s|i|) =
∏

i∈i

ζ(li) · 2−li (12)

whereζ(li) is the same as given in Equation 10.
Note that by giving equal a priori probability to each of the2li stringssi of length

li, we give no preference to any radius value inΛli once we have chosen a scaleR that
we believe is appropriate. The distributionζ that we have chosen for each string length
li has the advantage of decreasing slowly so that the risk bound does not deteriorate to
rapidly asli increases. Other choices are clearly possible.

By comparing the risk bounds of Corollary 1 for the two possible choices we have
for coding each radius (either with an example or with a message string), we notice that
it should be preferable to code explicitly a radius value with a string whenever we use a
numberl of bits less thanlog2 m (roughly). Hence, this will be the case whenever there
exists an interval[r1, r2] of “good” radius values such that(r2 − r1)/R ' 1/m.

Finally, we emphasize that the risk bounds of Theorem 1 and Corollary 1, used in
conjunction with the distribution of messages given by Equation 12, provides a guide
for choosing the appropriate trade-off between sparsity (the inverse of the size of the
compression set) and margin (the inverse of the length of the message string). Indeed,
the risk bound for an SCM with a decision surface having a large margin of separation
(smalllis) may be smaller than the risk bound of a sparser SCM having a smaller margin
(largelis).

4 The Learning Algorithm

Ideally, we would like to find a conjunction of balls that minimizes the risk bound of
Theorem 1 with the distribution given by Equation 12. Unfortunately, this cannot be
done efficiently in all cases since this problem is at least as hard as the (NP-complete)
minimum set cover problem (Marchand and Shawe-Taylor 2002). However, the sim-
ple set covering greedy heuristicwill construct a conjunction of at mostr ln(m) balls
whenever there exists a conjunction ofr balls that makes no errors with a training set
of m examples (Marchand and Shawe-Taylor 2002).

We say that a ballcoversan example iff it assigns-1 to that example. The set cov-
ering greedy heuristic simply consists of using a ball that covers the largest number of
negative examples (without making any errors on the positives), remove these negative
covered examples and repeat until all the negative examples are covered. Marchand and
Shawe-Taylor (2002) have modified this heuristic by incorporating the possibility of
making training errors if the final classifier is much smaller. It can be described as fol-
lows. LetN be the set of negative examples andP be the set of positive examples. We
start withN ′ = N andP ′ = P . LetQi be the subset ofN ′ covered by balli and letRi

be the subset ofP ′ covered by balli. We choose the balli that maximizes theutility Ui

defined as:

Ui
def= |Qi| − p · |Ri| (13)
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wherep is thepenaltysuffered by covering (and hence, misclassifying) a positive ex-
ample. Once we have found a ball maximizingUi, we updateN ′ = N ′ − Qi and
P ′ = P ′ − Ri and repeat to find the next ball until eitherN ′ = ∅ or the maximum
numberv of balls has been reached (early stopping the greedy).

Here we first modify the heuristic of Marchand and Shawe-Taylor (2002) by allow-
ing a maximum number of bitsl∗ that can be used for coding the radius of each ball.
Classifiers obtained with a small value ofl∗ will, on average, have a large separating
margin. Moreover, for this new learning algorithm, the distribution of messages given
by Equation 12 is defined for a fixed value ofR (the “predefined radius value that can-
not be exceeded”). Hence, in this case,R should be chosen from thedefinitionof each
input attributewithout observing the data. Consequently, this will generally forceeach
ball of the classifier to use a large number of bits for its radius value; otherwise the final
classifier is likely to make numerous training errors. We have therefore used the follow-
ing scheme to chooseR from the training data. We first choose a valueR∗ from the
definition of each input attribute (without observing the data). This could beR∗ =

√
n

for the case ofn {0, 1}-valued attributes. Then, we considert equally-spaced values
for R in the interval]0, R∗]. The message stringσ described in Section 3.2 is then just
preceded by the index to one of theset possible values. The value ofR referred to by
this index will then be used forevery ballof the classifier. For this extra part of the
message, we have assigned equal probability to each of thet possible values forR.
With this scheme, we only need to multiplyPM(Zi)(σ) of Equation 12 by1/t. Nev-
ertheless, this introduces one more adjustable parameter in the learning algorithm: the
value ofR.4 Therefore,p, v, l∗, andR are the “learning parameters” that our heuristic
uses to generate a set of classifiers. At the end, we can use the bound of Theorem 1 to
select the best classifier. Another alternative is to determine the best parameter values
by cross-validation.

5 Empirical Results on Natural Data

We have compared the new learning algorithm (called here SCM2), that codes each ball
radius with a message string, with the old algorithm (called here SCM1), that codes each
radius with a training example. Both of these algorithms were also compared with the
support vector machine (SVM) equipped with a RBF kernel of variance1/2γ and a soft
margin parameterC. Each SCM algorithm used theL2 metric since this is the metric
present in the argument of the RBF kernel.

Each algorithm was tested on the UCI data sets of Table 1. Each data set was ran-
domly split in two parts. About half of the examples was used for training and the
remaining set of examples was used for testing. The corresponding values for these
numbers of examples are given in the “train” and “test” columns of Table 1. The learn-
ing parameters of all algorithms were determined from the training setonly. The pa-
rametersC andγ for the SVM were determined by the 5-fold cross validation (CV)
method performed on the training set. The parameters that gave the smallest 5-fold CV
error were then used to train the SVM on the whole training set and the resulting clas-
sifier was then run on the testing set. Exactly the same method (with the same 5-fold

4 We have usedt u 30 different values ofR in our experiments.
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Table 1.SVM and SCM results on UCI data sets.

Data Set SVM results SCM1-cv SCM1-b SCM2-cv SCM2-b
Name train test C γ SVs errs b errs b errs b l∗ errs b l∗ errs
breastw 343 340 1 0.1 38 15 2 11 1 12 1 3 12 1 1 12
bupa 170 175 2 3.0 169 66 2 71 2 70 2 7 69 11 7 67
credit 353 300 100 0.25282 51 12 65 1 57 11 6 49 8 5 46
haberman144 150 2 0.5 81 39 2 41 1 39 8 2 36 2 2 37
pima 400 368 0.5 0.02241 96 1 108 1 105 4 1 107 13 5 103
USvotes 235 200 1 0.0253 13 8 26 3 19 7 3 19 4 2 15
Hart 150 147 1 3.0 64 26 1 28 1 23 1 2 24 1 2 23
Glass 107 107 10 3.0 51 29 4 20 4 19 7 6 19 3 5 18

split) was used to determine the learning parameters of both SCM1 and SCM2. These
results are referred to (in Table 1) as SCM1-cv and SCM2-cv. In addition to this, we
have compared this 5-fold CV model selection method with a model selection method
that uses the risk bound 6 of Corollary 1 to select the best SCM classifier obtained from
thesamepossible choices of the learning parameters that we have used for the 5-fold
CV method. The SCM that minimizes the risk bound (computed from the training set)
was then run on the testing set. These results are referred to (in Table 1) as SCM1-b
and SCM2-b. For SCM1, the risk bound was used in conjunction with the distribution
of messages given by Equation 11. For SCM2, the risk bound was used in conjunction
with the distribution of messages given by Equation 12.

The SVM results are reported in Table 1 where the “SVs” column refers to the
number of support vectors present in the final classifier and the “errs” column refers to
the number of classification errors obtained on the testing set. This last notation is used
also for all the SCM results reported in Table 1. In addition to this, the “b” and “l∗”
columns refer, respectively, to the number of balls and the maximum number of bits
used by the final classifier.

We observe that SCMs are always much sparser than SVMs with roughly the same
generalization error. Moreover, the risk bound is often better than 5-fold CV for choos-
ing the classifier with the smallest generalization error. (We have observed that the risk
bound was almost always within a factor of three of the test error.) We also observe
that SCM2 is generally as good as, and sometimes clearly better than, SCM1 for pro-
ducing classifiers with a small generalization error. Finally, it is interesting to note the
strong tendency of SCM2 to produce classifiers with more balls than those produced
by SCM1. This is especially true for SCM2-b versus SCM1-b. Hence SCM2 generally
sacrifices sparsity to obtain a larger margin.

6 Conclusion

We have proposed a new representation for the SCM that uses two distinct sources
of information to represent a conjunction of data-dependent balls: acompression set
to specify the center of each ball and amessage stringto encode the radius value
of each ball. Moreover, we have proposed a general data-compression risk bound that
depends explicitly on these two information sources. This bound therefore exhibits a
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non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize on
the training data. We have also proposed a new learning algorithm for the SCM where
the learner can control the amount of trade-off between the sparsity of the classifier
and the magnitude of its separating margin. Compared to the algorithm of Marchand
and Shawe-Taylor (2002), our experiments on natural data sets indicate that this new
learning algorithm generally produces classifiers having a larger separating margin at
the expenses of having more balls. The generalization error of classifiers produced by
the new algorithm was generally slightly better. Finally, the proposed data-compression
risk bound seems to be an effective guide for choosing the proper margin-sparsity trade-
off of a classifier.
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