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Abstract. We propose a new learning algorithm for the set covering machine
and a tight data-compression risk bound that the learner can use for choosing the
appropriate tradeoff between the sparsity of a classifier and the magnitude of its
separating margin.

1 Introduction

There exists a wide spectrum of different leaning strategies currently used by learning
algorithms to produce classifiers having good generalization. At one end of the spec-
trum, we have the set covering machine (SCM), proposed by Marchand and Shawe-
Taylor (2002), that tries to find the sparsest classifier having few training errors. At
the other end of the spectrum, we have the support vector machine (SVM), proposed by
Boser et. al. (1992), that tries to find the maximum soft-margin separating hyperplane on
the training data. Since both of these learning machines can produce classifiers having
good generalization, it is worthwhile to investigate if classifiers with improved general-
ization could be found by learning algorithms that try to optimize a non-trivial function
that depends on both the sparsity of a classifier and the magnitude of its separating
margin.

There seems to be a widespread belief that learning algorithms should somehow
try to find such a non-trivial margin-sparsity trade-off. For example, to find a sparser
SVM (but with a smaller margin), Bennett (1999) and Bi et. al. (2003) have proposed
to minimize an¢;-norm functional (instead of the tradition&l-norm) and have found
that, indeed, the sparser SVM sometimes had better generalization. Therefore, from this
SVM perspective, we should consider algorithms that minimizegarorm functional
for any 5 € [0,2]. In the 3 = 2 limit, we obtain the SVM with the largest possible
separating margin (without considering its sparsity). In the= 0 limit, we would
obtain the sparsest SVM (without considering the magnitude of its separating margin).
This parametef would then control the margin-sparsity trade-off of the final classifier.
Unfortunately, this optimization problem is currently efficiently solvable only¥et 2
andl.

This computational difficulty does not arise (so abruptly) if, instead, we consider
margin-sparsity trade-off learning algorithms from the SCM perspective. Indeed, the
learning algorithm for the SCM proposed by Marchand and Shawe-Taylor (2002) con-
sists of a set covering greedy heuristic that, at each greedy step, appends, to a conjunc-
tion, the Boolean-valued feature that covers the largest number of negative examples



without making too many errors on the positive examples. If, in addition, we force
the algorithm to use only features having the property that all the (remaining) train-
ing examples are at least a distanc&om its decision surface, we are assured that a
conjunction of such features will give a classifier having no training examples within a
distancey of its decision surface. In the = 0 limit, the goal of the learner is to produce
the sparsest SCM without considering the magnitude of its separating margin (as in the
original SCM algorithm). For finite,, we will achieve a separating margin of at least

at the expense of having more features in the SCM. Henisa parameter that controls

the margin-sparsity trade-off of the final classifier without introducing any substantial
computational difficulty. We therefore propose, in Section 3, a margin-sparsity trade-off
learning algorithm for the SCM which was inspired by this simple idea.

The widespread belief that learning algorithms should try to find a non-trivial margin-
sparsity trade-off is, to our knowledge, not currently supported by a generalization error
bound (also called risk bound) that explicitly dependboththe sparsity of a classifier
andthe magnitude of its separating margin. However, both sparsity and margin can be
considered as different forms of data-compression. Indeed, sparsity is a form of data
compression known as sample-compression (Littlestone and Warmuth, 1986) since it
means that a classifier can be reconstructed from a small subset of the training data.
Less obviously, the magnitude of the separating margin of a classifier can also be con-
sidered as a form of data compression since it means that there exists a small code that
can specify a “good” location for the classifier's decision surface. For the SCM of Marc-
hand and Shawe-Taylor (2002), eatdta-dependent bafeature is identified by two
training points: aenterand aborder (to define the radius of the ball). In section 3, we
propose instead to code the radius of each balltmgssage stringHence, the existence
of a large margin of “equally good radius values” for a ball will imply the existence of a
short code for its radius. With this new version of the SCM, we therefore identify each
classifier by two distinct information sourcescampression sathich consists of the
center of each ball in the classifier anthassage stringrhich encodes the radius value
of each ball.

In section 2 of this paper, we therefore propose a tight data-compression risk bound
that depends explicitly on these two information sources. This bound therefore exhibits
a non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize
on the training data. In contrast with other sample-compression bounds, the proposed
bound is valid for any compression set-dependent distribution of messages and, as we
argue, permits the usage of smaller message strings which, in turn, can help reduce
significantly the size of the risk bound. We then show, in section 3, how we can apply
this risk bound to the SCM by providing an appropriate compression set-dependent
distribution of messages. Finally, we show, on natural data sets, that the new SCM
algorithm compares favorably to the SCM algorithm of Marchand and Shawe-Taylor
(2002) and we also show that the data-compression risk bound is an effective guide for
choosing the proper margin-sparsity trade-off of a classifier.



2 A Data-Compression Risk Bound

We consider binary classification problems where the input spa@®nsists of an

arbitrary subset oR™ and the output spagg = {—1,+1}. An examplez def (x,y)Is

an input-output pair where € X andy € ). We are interested in learning algorithms
that have the following property. Given a training Set {z, .. ., z,, } of m examples,

the classifierd(.S) returned by algorithn# is described entirely by twoomplementary
sources of informatiana subsetz; of S, called thecompression setand amessage
string o which represents the additional information needed to obtain a classifier from
the compression set.

Given a training sef5, the compression sef is defined by a vectar of indices
j o (i1,92,...,45) with i; € {1,...,m} Vj andi; < is < ... < i) and where
|li| denotes the number of indices present.iklence z; denotes théth example ofS
wherea%; denotes the subset of examplessahat are pointed by the vector of indices
i defined above. We will useto denote the set of indices not present.ikience, we
haveS = z; U z; for any vectori ¢ Z whereZ denotes the set of th&" possible
realizations ofi.

The fact that any classifier returned by algoritihis described by a compression
set and a message string implies that there exigtsanstruction functiofk, associated
with A, that outputs a classifié® (o, z;) when given an arbitrary compression getC
S and message string chosen from the sebt(z;) of all distinct messages that can
be supplied tdR with the compression set. It is only when such & exists that the
classifier returned byl (.5) is alwaysidentified by a compression sgtand a message
stringo.

The perceptron learning rule and the SVM are examples of learning algorithms
where the final classifier can be reconstructed solely from a compression set (Graepel.
et. al.,2000, 2001). In contrast, the reconstruction function for SCMs needs both a com-
pression set and a message string. Later, we will see how the learner can trade-off the
compression set size with the length of the message string to obtain a classifier with a
smaller risk bound and, hopefully, a smaller true risk.

We seek a tight risk bound for arbitrary reconstruction functions that holds uni-
formly for all compression sets and message strings. For this, we adopt the PAC setting
where each exampleis drawn according to a fixed, but unknown, probability distribu-
tion D on X’ x Y. The riskR(f) of any classifierf is defined as the probability that it
misclassifies an example drawn accordingto

def .
R(f) = Prxy~p (f(x) #y) = Exy)~pI(f(x) #y)
whereI(a) = 1 if predicatea is true and0 otherwise. Given a training s&t =
{z1,...,zn} Of m examples, thempirical risk Rs(f) on S, of any classifierf, is
defined according to:

m

Rs(F) & 3 17 0x0) # 00) 2 By s (709 £ )

Let Z™ denote the collection of: random variables whose instantiation gives a train-
ing sampleS = z™ = {z1,...,2,,}. Letus denot®rzm . pm (-) by Pz~ (-). To obtain



the tightest possible risk bound, we fully exploit the fact that the distribution of classi-
fication errors is a binomial. The binomial tail distributiam(%, r) associated with a
classifier of (true) risk is defined as the probability that this classifier makes at most

errors on a test set of, examplesBin (£, r) def S o (Mt — )™t
Following Langford (2005) and Blum and Langford (2003), we now definebthe
nomial tail inversionBin (%, 6) as the largest risk value that a classifier can have while

still having a probability of at least of observing at most errors out ofim examples:

Bin (k,é) 4f sup {r : Bin (k,r> > (5}
m m

From this definition, it follows thaBin (Rs(f), §) is thesmallestupper bound, which
holds with probability at least— 4, on the true risk of any classifigrwith an observed
empirical riskRg(f) on a test set ofn examples:

sz{R(f) SBm(Rzm(f),a)} >1-5 vf )

Note that the quantifiev f appearoutsidethe probabilityPz {-} because the bound
Bin (Rs(f),d) does not holgimultaneouslyand uniformly) for all classifierg mem-
ber of some predefined clags In contrast, the proposed risk bound of Theorem 1
holds uniformly for all compression sets and message strings.

The proposed risk bound is a generalization of the sample-compression risk bound
of Langford (2005) to the case where part of the data-compression information is given
by a message string. It also has the property to reduce to the Occam’s razor bound
when the compression sgt vanishes. The idea of using a message string as an ad-
ditional source of information was also used by Littlestone and Warmuth (1986) and
Ben-David and Litman (1998) to obtain a sample-compression bound looser than the
bound presented here. Moreover, in contrast with these bounds, Theorem 1 applies to
any compression set-dependent distribution of messaggs, satisfying:

Y. Pumey(0) <1 Va )
oEM(zi)
and any prior distributiorP; of vectors of indices satisfying:
> Pri) <1 (3)
iez
Theorem 1. For any reconstruction functio® that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distributfgrof vectors of

indices, for any compression set-dependent distribution of mesgages), and for
anyé € (0,1], we have:

PZm {Vi S 1-7 Vo S M(Zl) R(R(O’, Zl)) S

%(RZ;(R(U, Zi))7 Pz(i)PM(z‘)(U)(S) } Z 1-6



where, for any training set™, R,_(f) denotes the empirical risk of classifigron the
examples o™ that do not belong to the compression sgt

Proof. Consider:
pr et sz{ﬂi €7Z:30 € M(Z;): R(R(0,Z;)) >

Bin( Rz (R(o, zi>>7Pz<i>PM<zi><o>6)}

To prove the theorem, we show thiat < §. SincePz () = Ez,Pzz,(-), the union
bound and Equations 1, 2, and 3 imply that we have:

P’ < ZEZ Z PZ -2 { )) > Bln(Rz ('R,(O'7 Zl)) PI( )PM(Z )( )5)}
ieZ ceEM(Z
<ZEZ ZPI 1) Prg(z) (0)8 < 6 [ ]
i€l oeM(Z;)

The risk bound of Theorem 1 appears to be as tight as it possibly can. Indeed, the
proof of Theorem 1 contains three inequalities. The last two inequalities come from
Equations 1, 2, and 3 and cannot be improved. The first inequality comes from the
application of the union bound for all the possible choices of a compression subset of
the training set and is unavoidable for statistically independent training examples.

It is important to note that, onc&r and Py, are specified, the risk bound
of Theorem 1 for classifieR(z;, o) depends on its empirical risknd on the prod-

uct Pz (i) Ppy(s) (o). However,ln (m) is just the amount of information

needed to specify a classifi®&(z;, o) once we are given a training set and the pri-
ors Pz and Ppy(,,). Theln(1/Pz(i)) term is the information content of the vector of
indicesi that specifies the compression set andlthie/ P (,,) (o)) term is the infor-
mation content of the message stringConsequently the bound of Theorem 1 specifies
guantitatively how much training errors learning algorithms should trade-off with the
amount of information needed to specify a classifiei bpdo.

Any bound expressed in terms of the binomial tail inversion can be turned into
a more conventional and looser bound by inverting a standard approximation of the
binomial tail such as those obtained from the inequalities of Chernoff and Hoeffding.
In this paper, we make use of the following approximations (provided here without
proof) for the binomial tail inversion:

Lemma 1. For any integerm > 1 andk € {0, ..., m}, we have:

() st-oa(zn (Do (5)]) e
il () (3

IN

IN

(5)




Therefore, these approximations enable us to rewrite the bound of Theorem 1 into
the following looser (but somewhat clearer and more conventional) form:

Corollary 1. For any reconstruction functio® that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distribufferof vectors of
indices, for any compression set-dependent distribution of mesgages), and for
anyd € (0,1}, we have:

Pz {Vi €I, Vo e M(Zl) R(R(Ua Zl)) <

1—exp<@[ln(m;d)+ln<]w5)]>} >1-5 (6)

and, consequently:

Pzn {Vi €I,Yo € M(Z;): R(R(0,Z;)) <

i (") o ()| 210

def ., . . . def
whered = |i| is the sample compression set size of classiiér, Z;) and k =

i| Rz, (R(0, Z3)) is the number of training errors that this classifier makes on the ex-
amples that are not in the compression set.

It is now quite clear from Corollary 1 that the risk bound of classiRér, Z;) is small
when its compression set sizeand its numbett of training errors are both much
smaller than the numben of training examples. These are uniform bounds over a set
of data-dependent classifiers defined by the reconstruction furitibm contrast, VC
bounds (Vapnik 1998) and Rademacher bounds (Mendelson, 2002) are uniform bounds
over a set of functions definedthout reference to the training datblence, these latter
bounds do not apply to our case.

The bound of Equation 6 is very similar to (and slightly tighter than) the recent
bound of Marchand and Sokolova (2005).

The looser bound of Equation 7 is similar to the bounds of Littlestone and Warmuth
(1986) and Floyd and Warmuth (1995) when the Aétof all possible messages is
independent of the compression geand when we choose:

Paa(0) = 1/IM| Yo € M @)

—1
Pﬁi)z(ﬁ) (m+1)"' vieT (9)

But other choices that give better bounds are clearly possible. For example, in the fol-
lowing sections we will use:

m 6

—1 .
Pr(i) = (Iil> ¢(i)) with ¢(a) détﬁ(a—i—l)_Q Va €N (10)



which satisfies the constraint of Equation 3 sifc&” , i~ = 72 /6. This choice forP;
has the advantage that the risk bounds do not deteriorate too rapidly/iviremeases.

In the next section, we show how we can apply the risk bounds of Theorem 1 and
Corollary 1 to the SCM. For this task, we will provide choices for the distribution of
message$’(,,) which are more appropriate than the simplest choice given by Equa-
tion 8. Indeed, we feel that it is important to allow the set of messages to depend on the
sample compressiaf since it is conceivable that for somag very little extra informa-
tion may be needed to identify the classifier whereas for some s{herore informa-
tion may be needed. Without such a dependency; pthe set of possible messagks
would be unnecessarily large and would loosen the risk bound. But, more importantly,
the risk bound would not depend on the particular messaggsed. However, we feel
that it is important for learning algorithms to be able to trade-off the complexity (or
information content) of with the complexity ofs. Hence, a good risk bound should
somehow indicate what the proper trade-off should be.

3 Application to the Set Covering Machine

Recall that the task of the SCM (Marchand and Shawe-Taylor 2002) is to construct the
smallest possible conjunction of (Boolean-valued) features. We discuss here only the
conjunction case. The disjunction case is treated similarly just by exchanging the role
of the positive with the negative examples.

For the case oflata-dependent ballgach feature is identified by a training exam-
ple, called aenter(x., y.), and a radiug. Given any metriel, the outputh(x) on any
input examplex of such a feature is given by:

Sy ifdxx) <p
h(x) = {—yc otherwise

3.1 Coding Each Radius with a Training Example

Marchand and Shawe-Taylor (2002) have proposed to use another training example
x;, called aborder point to code for the radius so that= d(x.,x;). In this case,

given a compression set, we need to specify the examplesznthat are used for a
border point without being used as a center. As explained by Marchand and Shawe-
Taylor (2002), no additional amount of information is required to pair each center with
its border point whenever the reconstruction functidris constrained to produce a
classifier that always correctly classifies the compression set. Furthermore, as argued
by Marchand and Shawe-Taylor (2002), we can limit ourselves to the case where each
border point is a positive example. In that case, each messagé1(z;) just needs to
specify the positive examples that are a border point without being a center(z;¢t
andp(z;) be, respectively, the number of negative and the number of positive examples
in compression set;. Let (o) be the number of border point examples specified in
message and let((a) be the same as defined in Equation 10. We can then use:

N -1
Praca (o) = 600 - () 1)



since, in that case, we have for any compressior;set

p(2i) p(z-) -1
Z)PM(zn(O’)—ZC(b) > (b(a‘)> <1

cEM(z; b=0 o:b(o)=b

With this distributionP(,,), the risk bound of Theorem 1 is tighter than the one pro-
vided by Marchand and Shawe-Taylor (2002) because of the more efficient treatment
of the training errors made by using the binomial tail inversion.

3.2 Coding Each Radius with a Small Message String

Another alternative, not considered by Marchand and Shawe-Taylor (2002), is to code
each radius value by a message string having the fewest number of bits. In this case,
no border points are used and the compression set only consists of ball centers. Con-
sequently, the risk bounds of Theorem 1 and Corollary 1 will be smaller for classifiers
described by this method provided that we do not use to many bits to code each ra-
dius. We expect that this will be the case whenever there exists a large irfjterval
(i.e., a margin) of radius values such that no training examples are present between the
two concentric spheres, centeredsaqn with radiusr; andrs. The best radius value in
that case will be the one that has the shortest code. A similar idea was applied by von
Luxburg et. al. (2004) for coding the maximum-margin hyperplane solution for support
vector machines.

Hence, consider the problem of coding a radius val«e [r1, 73] C [0, R] where
R is some predefined value that cannot be exceeded and Wwherg] is an interval of
“equally good” radius valuésWe propose the following diadic coding scheme for the
identification of a radius value that belongs to that interval./Lled the number of bits
that we use for the code. We adopt the convention that a colde 6fbits specifies the
radius valueR /2. A code ofl = 1 bit either specifies the valuR/4 (when the bit is 0)
or the value3R/4 (when the bit is 1). A code df = 2 specifies one of the following
values:R/8,3R/8,5R/8, TR /8. Hence, a code dfbits specifies one value among the

set/; of radius values:
2j -1 1%
def -
Al - { 2l+1 R}l
Jj=1

Given an intervalry, r2] C [0, R] of radius values, we take the smallest numbef
bits such that there exists a radius valuelinthat falls in the intervalry, r2]. In this
way, we will need at mostlog, (R/(r2 —r1))] bits to obtain a radius value that falls in
[7"1, 7"2].

Hence, to specify the radius for each center of a compression set, we need to specify
the number of bits and al-bit string s that identifies one of the radius valuesAn.
Therefore, the message stringent to the reconstruction functi@®, for a compression
setz;, consists of the set of paif$;, s;) of numbers needed to identify the radius of
each centei € i. The risk bound does not depend on how we actually ecodr

% By a “good” radius value, we mean a radius value for a ball that would cover many negative
examples and very few positive examples (see the learning algorithm).



some receiver). It only depends on the a priori probabilities assigned to each possible
realization ofo. We choose the following distribution:

ef _
Prz)(0) € Praczyy (1,51, Ui, 85ip) = [T¢a) 27" (12)

i€i

where((l;) is the same as given in Equation 10.

Note that by giving equal a priori probability to each of testringss; of length
l;, we give no preference to any radius valuelin once we have chosen a scéldhat
we believe is appropriate. The distributigrthat we have chosen for each string length
l; has the advantage of decreasing slowly so that the risk bound does not deteriorate to
rapidly as/; increases. Other choices are clearly possible.

By comparing the risk bounds of Corollary 1 for the two possible choices we have
for coding each radius (either with an example or with a message string), we notice that
it should be preferable to code explicitly a radius value with a string whenever we use a
number! of bits less tharog, m (roughly). Hence, this will be the case whenever there
exists an intervalr, r2] of “good” radius values such that, —r1)/R 2 1/m.

Finally, we emphasize that the risk bounds of Theorem 1 and Corollary 1, used in
conjunction with the distribution of messages given by Equation 12, provides a guide
for choosing the appropriate trade-off between sparsity (the inverse of the size of the
compression set) and margin (the inverse of the length of the message string). Indeed,
the risk bound for an SCM with a decision surface having a large margin of separation
(smalli;s) may be smaller than the risk bound of a sparser SCM having a smaller margin
(largel;s).

4 The Learning Algorithm

Ideally, we would like to find a conjunction of balls that minimizes the risk bound of
Theorem 1 with the distribution given by Equation 12. Unfortunately, this cannot be
done efficiently in all cases since this problem is at least as hard as the (NP-complete)
minimum set cover problem (Marchand and Shawe-Taylor 2002). However, the sim-
ple set covering greedy heuristill construct a conjunction of at mostin(m) balls
whenever there exists a conjunctionroballs that makes no errors with a training set

of m examples (Marchand and Shawe-Taylor 2002).

We say that a baltoversan example iff it assignsl to that example. The set cov-
ering greedy heuristic simply consists of using a ball that covers the largest number of
negative examples (without making any errors on the positives), remove these negative
covered examples and repeat until all the negative examples are covered. Marchand and
Shawe-Taylor (2002) have modified this heuristic by incorporating the possibility of
making training errors if the final classifier is much smaller. It can be described as fol-
lows. Let N be the set of negative examples a@ndbe the set of positive examples. We
start withN/ = N andP’ = P. Let Q; be the subset oV’ covered by bali and letR;
be the subset aP’ covered by balf. We choose the ballthat maximizes thetility U;
defined as:

Ui € 1Qil —p- |Ri| (13)
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wherep is the penaltysuffered by covering (and hence, misclassifying) a positive ex-
ample. Once we have found a ball maximizifig, we updateN’ = N’ — @, and

P’ = P’ — R; and repeat to find the next ball until eithat = § or the maximum
numberv of balls has been reached (early stopping the greedy).

Here we first modify the heuristic of Marchand and Shawe-Taylor (2002) by allow-
ing a maximum number of bits* that can be used for coding the radius of each ball.
Classifiers obtained with a small value i6fwill, on average, have a large separating
margin. Moreover, for this new learning algorithm, the distribution of messages given
by Equation 12 is defined for a fixed value Bf(the “predefined radius value that can-
not be exceeded”). Hence, in this caBeshould be chosen from thdefinitionof each
input attributewithout observing the dat&Consequently, this will generally for@ach
ball of the classifier to use a large number of bits for its radius value; otherwise the final
classifier is likely to make numerous training errors. We have therefore used the follow-
ing scheme to choosRk from the training dataWe first choose a valug* from the
definition of each input attribute (without observing the data). This coul®be- \/n
for the case ofr {0, 1}-valued attributes. Then, we consideequally-spaced values
for R in the intervall0, R*]. The message stringdescribed in Section 3.2 is then just
preceded by the index to one of thesgossible values. The value &f referred to by
this index will then be used foevery ballof the classifier. For this extra part of the
message, we have assigned equal probability to each of plssible values foR.

With this scheme, we only need to multipl(z,) (o) of Equation 12 byl /t. Nev-
ertheless, this introduces one more adjustable parameter in the learning algorithm: the
value of R.* Thereforep, v, [*, andR are the “learning parameters” that our heuristic
uses to generate a set of classifiers. At the end, we can use the bound of Theorem 1 to
select the best classifier. Another alternative is to determine the best parameter values
by cross-validation.

5 Empirical Results on Natural Data

We have compared the new learning algorithm (called here SCM2), that codes each ball
radius with a message string, with the old algorithm (called here SCM1), that codes each
radius with a training example. Both of these algorithms were also compared with the
support vector machine (SVM) equipped with a RBF kernel of varidriee and a soft
margin parametef’. Each SCM algorithm used thie, metric since this is the metric
present in the argument of the RBF kernel.

Each algorithm was tested on the UCI data sets of Table 1. Each data set was ran-
domly split in two parts. About half of the examples was used for training and the
remaining set of examples was used for testing. The corresponding values for these
numbers of examples are given in the “train” and “test” columns of Table 1. The learn-
ing parameters of all algorithms were determined from the trainingrslgt The pa-
rametersC' and~ for the SVM were determined by the 5-fold cross validation (CV)
method performed on the training set. The parameters that gave the smallest 5-fold CV
error were then used to train the SVM on the whole training set and the resulting clas-
sifier was then run on the testing set. Exactly the same method (with the same 5-fold

4 We have used = 30 different values ofR in our experiments.
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Table 1.SVM and SCM results on UCI data sets.

Data Set SVMresults [|[SCM1-cv|SCM1-h|SCM2-cv| SCM2-b
Name |trainjtest)iC |y |SVserrg|b |errs ||blerrs ||b |I*|errg|b [I*|errs
breastw |343(340|1 [0.1 |38 |15 ||2 |11 112 113121 |1 |12
bupa 170|175(2 |3.0 |169|66 ||2 |71 2|70 2 |7/69 ||11]7 |67
credit  |353|300|1000.25282|51 ||12|65 1|57 11|16 |49 ||8 |5 |46
habermamni44|150(2 (0.5 (81 (39 |2 |41 1|39 8 2136 ||2 |2 |37
pima 400(368|0.5|0.02241(96 ||1 {108 ||1{105 |4 |1 (107|135 |103
USvotes (235 (2001 |0.0253 |13 (|8 |26 3|19 7 13|19 ||4 (2|15
Hart 150|147(1 |3.0 |64 |26 |1 |28 1|23 12241 2|23
Glass |107|10710 (3.0 |51 |29 ||4 |20 4/19 7 16|19 ||3 [518

split) was used to determine the learning parameters of both SCM1 and SCM2. These
results are referred to (in Table 1) as SCM1-cv and SCM2-cv. In addition to this, we
have compared this 5-fold CV model selection method with a model selection method
that uses the risk bound 6 of Corollary 1 to select the best SCM classifier obtained from
the samepossible choices of the learning parameters that we have used for the 5-fold
CV method. The SCM that minimizes the risk bound (computed from the training set)
was then run on the testing set. These results are referred to (in Table 1) as SCM1-b
and SCM2-h. For SCM1, the risk bound was used in conjunction with the distribution
of messages given by Equation 11. For SCM2, the risk bound was used in conjunction
with the distribution of messages given by Equation 12.

The SVM results are reported in Table 1 where the “SVs” column refers to the
number of support vectors present in the final classifier and the “errs” column refers to
the number of classification errors obtained on the testing set. This last notation is used
also for all the SCM results reported in Table 1. In addition to this, the “b” dnd “
columns refer, respectively, to the number of balls and the maximum number of bits
used by the final classifier.

We observe that SCMs are always much sparser than SVMs with roughly the same
generalization error. Moreover, the risk bound is often better than 5-fold CV for choos-
ing the classifier with the smallest generalization error. (We have observed that the risk
bound was almost always within a factor of three of the test error.) We also observe
that SCM2 is generally as good as, and sometimes clearly better than, SCM1 for pro-
ducing classifiers with a small generalization error. Finally, it is interesting to note the
strong tendency of SCM2 to produce classifiers with more balls than those produced
by SCM1. This is especially true for SCM2-b versus SCM1-b. Hence SCM2 generally
sacrifices sparsity to obtain a larger margin.

6 Conclusion

We have proposed a new representation for the SCM that uses two distinct sources
of information to represent a conjunction of data-dependent baliengression set

to specify the center of each ball andressage stringto encode the radius value

of each ball. Moreover, we have proposed a general data-compression risk bound that
depends explicitly on these two information sources. This bound therefore exhibits a
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non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize on
the training data. We have also proposed a new learning algorithm for the SCM where
the learner can control the amount of trade-off between the sparsity of the classifier
and the magnitude of its separating margin. Compared to the algorithm of Marchand
and Shawe-Taylor (2002), our experiments on natural data sets indicate that this new
learning algorithm generally produces classifiers having a larger separating margin at
the expenses of having more balls. The generalization error of classifiers produced by
the new algorithm was generally slightly better. Finally, the proposed data-compression
risk bound seems to be an effective guide for choosing the proper margin-sparsity trade-
off of a classifier.
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