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Abstract. Generalizations of chance corrected statistics to measure inter-
expert agreement on class label assignments to the data instances have
traditionally relied on the marginalization argument over a variable group
of experts. Further, this argument has also resulted in agreement mea-
sures to evaluate the class predictions by an isolated classifier against the
(multiple) labels assigned by the group of experts. We show that these
measures are not necessarily suitable for application in the more typical
fixed experts’ group scenario. We also propose novel, more meaningful,
less variable generalizations for quantifying both the inter-expert agree-
ment over the fixed group and assessing a classifier’s output against it in
a multi-expert multi-class scenario by taking into account expert-specific
biases and correlations.
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1 Introduction

Performance evaluation of learning algorithms over data for which deterministic
(true) labeling is unknown comes with unique issues. When the ground truth is
known, the evaluation consists of calculating a loss function between the true
labels and the ones predicted by the classifier. An indicator loss function is used
in the case of classification algorithms resulting in an accuracy estimate. How-
ever, various relevant application scenarios exist where expert-labels are sought
since the true labels cannot be determined due to one or more issues such as
inadequate data acquisition, limited knowledge of the application domain and so
on. Note that the expert can also be an automatic labeling process (e.g., a clas-
sifier). Further, labels from multiple experts are typically obtained to mitigate
the variability in individual estimates.1 Examples of such applications include
tasks such as medical image segmentation or alignment of stock price move-
ment prediction approaches with other market indicators (e.g., market analysts’
predictions). With technological advances such as Amazon’s Mechanical Turk2

1 In this paper, we do not consider novice or extremely imperfect label generation
processes, including experts.

2 http://www.mturk.com
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(AMT), obtaining such labels for various human intelligence tasks is becoming
increasingly easier.

It has been widely argued that chance agreements, resulting from experts’
natural labeling propensities, should be taken into account while measuring inter-
expert agreements. This is also the case when evaluating a classifier’s perfor-
mance, both against true (or even single expert generated) labels and against
labels obtained from a group of experts. This argument resulted in various chance
corrected agreement statistics such as Scott’s π statistic (Scott 1955) and Co-
hen’s kappa (Cohen 1960) measure (see (Kuncheva 2004, Japkowicz and Shah
2011) for discussion).

We consider the general form of this problem. Given a dataset S each of whose
instances has been labeled by one of r experts, two quantities of interest need to
be quantified. First, the extent of agreement among the r experts generating the
labels, called the Inter-expert or Inter-rater agreement; and, Second, the extent
to which the labeling output by a new classifier r agrees with those of r experts
as a group.

With regard to measuring the inter-expert agreement, however, the earlier
attempts such as Cohen’s kappa estimate resulted in statistics that applied only
to binary classification scenarios over two sets of labels. One of the famous
generalizations of Cohen’s κ statistic was proposed by Fleiss (1971), denoted
here by κF and has since been projected to be a standard in measuring inter-
expert agreement (even hard coded in toolkits such as WEKA (Witten and Frank
2005)). Moreover, attempts motivated by argument along the lines of Fleiss
(1971), although few, have also been made to quantify the agreement between
a classifier (or an isolated expert) and a group of experts. One of the recent
generalizations in this tradition has been that of Vanbelle and Albert (2009)
that we will discuss later (we denote the unweighted variant κ̂ in (Vanbelle and
Albert 2009) here by κva).

In both these cases, the typical approach has been that of marginalizing over
the experts comprising the group, under the variable expert assumption that each
individual expert in the group comes from a (much larger) pool of experts and
is interchangeable as long as the size of the group remains fixed. Marginalization
over experts refers to obtaining probabilistic estimates of random assignment of
a label to an example by a random expert. Since the experts need not be the
same over instances in the variable expert assumption, this amounts to obtaining
such estimates from the pool of all the labels by all the experts taken together.
However, we contend that such estimation is not suitable over a fixed group of
experts. In this case more information on correlated expert behavior is avail-
able and needs to be taken into account. By ignoring the expert specific biases
and their correlations, the marginalized estimates invariably lead to pessimistic
agreement measurements characterized by a higher variance in the fixed expert
group scenario. In addition, the marginalization approach has more serious im-
plications when there is a high heterogeneity in expert biases. Further, measures
such as κva, motivated by similar arguments, also suffer from similar limitations
when applied to the fixed expert scenario.
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This paper proposes agreement statistics for measuring agreement between
and against a group of r fixed experts. In particular, for inter-expert agreement,
we propose a generalization of Cohen’s kappa statistic to the case of multiclass
classification (nominal scale) by a fixed group of experts. The proposed general-
ization has the property that it reduces to the classical version of Cohen’s kappa
in the case of binary classification by two experts. We then use this statistic
to obtain a measure of agreement of a new classifier against the fixed group
of experts. This argument results not only in tighter agreement statistics but
also in more meaningful treatment of chance agreement as we will see below. A
point to note here is that we do not assume existence of ground truth and as
such neither attempt to learn the raters’ behavior nor to obtain an estimate of
the ground truth. Attempts along these lines have been made but differ in the
inherent assumptions of the framework (see, for instance, (Raykar et al. 2010)
which extends the STAPLE approach of (Warfield et al. 2004), or (Whitehill
et al. 2009) that, based on different premise, propose estimating ground truth
from multiple labels and also model the expertise of each labeler). This work
also differs from the recent works in learning from crowds (e.g., (Snow et al.
2008)) settings in that we assume a setting in which the experts are assumed to
be fixed and focus on obtaining evaluative estimates, as well as from works in
developing probabilistic models (e.g., (Yan et al. 2010)) on annotater expertise
to provide an estimate of true label in that we do not assume a determinable
ground truth.

The rest of the paper is organized as follows: Section 2 proposes a new mea-
sure for inter-expert agreement estimation by treating chance agreement in a
more coherent manner w.r.t. the observed agreement. Based on this, Section 3
then introduces a novel measure to estimate agreement between a classifier and
a fixed group of experts. Both this sections also contrast the proposed measures
with their respective marginalization-based counterparts. Section 4 provides an
insight into both asymptotic and empirical behavior of the proposed statistics
along with the crucial differences from related metrics. These insights are em-
pirically supported by some results on synthetic and real data in Section 5.
Section 6 discusses some related approaches along with their limitations with
regard to fixed expert group scenario. Finally, we conclude in Section 7.

2 Measuring Inter-expert agreement

Let S = {i1, . . . , in} denote a dataset with n instances. Each instance i ∈ S is
assigned one of the k class labels from

{
l1, . . . , lk

}
by a group R of r experts.

By cij we denote the number of experts assigning instance ii to class lj . Also,
cpj denotes the number of instances assigned to class lj by expert p. Note that
the measures such as κF (as well as κva) that marginalize over experts assume
R ⊂ R where R denotes a pool of experts from which R is drawn for different
instances. However, under our setting R is considered to be fixed as is the case
in many typical applications of the kind mentioned above.
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Given any agreement statistic A, a chance corrected agreement estimate can

be defined as κ = ES(A)−E(A)
maxS(A)−E(A) where ES(A) denotes the average empirical

agreement between the experts on dataset S, E(A) denotes the true expecta-
tion of A and maxS(A) denotes the maximum achievable agreement between
the experts on dataset S. Various characterizations of the agreement statistic A
lead to different agreement estimates. For instance, Cohen’s κ assumes A to be
proportion of instances on which two raters agree in a binary classification sce-
nario. Consequently, the true expectation measures the probability that these
raters will agree just by chance (based on their individual labeling probabili-
ties/biases) on a random example. In this sense, different agreement estimates
attempt to capture different characteristics of the scenario to obtain assessments
of rater agreements obtained above and beyond their coincidental concordance,
also referred to as chance agreement (the expectation).

For notational simplicity, let us denote Ao = ES(A), Ae = E(A) and Amax =
maxS(A). Hence,

κ =
Ao − Ae

Amax − Ae
(1)

We adopt a pairwise agreement statistic for A to model the expert agree-
ments. By taking into account the agreement between all the individual pairs of
experts, we can quantify the overall observed agreement among the r experts as:

Ao =
1

n

n∑
i=1

Ao(ii) =
1

n

n∑
i=1

k∑
j=1

Ao(ii, l
j) =

1

n

n∑
i=1

k∑
j=1

1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ ̸=p

epij ·e
p′

ij

where Ao(ii, l
j) is nothing but the proportion of pairwise agreement between

experts over an instance ii assigned to class lj out of a total of r(r− 1) possible
expert pairs; epij = 1 if the expert p assigns instance ii to class lj and zero oth-
erwise. Notice that this includes the duplicate pairs of experts as well. However,
we adhere to this more general form since potentially the pairwise costs may be
asymmetric. Weights to take into account these asymmetric costs can then be
easily integrated in this form.

The above computation yields:

Ao =
1

n

n∑
i=1

k∑
j=1

[ 1

r(r − 1)
cij(cij − 1)

]
(2)

This agreement criterion has been widely utilized including the case of κF .
The measures assuming a variable expert case obtain the chance agreement by
relying on marginalization over the experts. For instance, Fleiss (1971) used

Ae =
∑k

j=1 c
2
.j where c.j = 1

nr

∑n
i=1 cij . Replacing this in Equation 1 and set-

ting Amax = 1 gives the κF coefficient. However, this results in an excessively
optimistic estimate over chance agreement which in turns gives a very conser-
vative agreement statistic. For unique pairs of experts, the expectation of the
pairwise A statistic has been discussed by (Hubert 1977). We use a similar ar-
gument for the more general case of all possible pairs used in Ao of Equation 2
and obtain, for the fixed experts case,:
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Ae =
k∑

j=1

Ae(l
j) =

k∑
j=1

1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ ̸=p

[
vpj v

p′

j

]
(3)

where Ae(l
j) quantifies the pairwise chance agreement between the experts on

any given class label lj such that vpj denotes the probability with which the

expert p assigns a random instance to class lj . The empirical estimate of Ae can
be obtained from the data as:

Ae =

k∑
j=1

1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ ̸=p

[
cpj
n

cp′j

n

]
(4)

Using Ao and Ae defined in Equations 2 and 4 respectively, along with
Amax = 1 in Equation 1, we get the desired inter-expert agreement statistic
as:

κS =

∑n
i=1

∑k
j=1 cij · (cij − 1)− 1

n

∑k
j=1

∑
p∈R

∑
p′∈R,p′ ̸=p[cpjcp′j ]

nr(r − 1)
[
1− 1

n2r(r−1)

∑k
j=1

∑
p∈R

∑
p′∈R,p′ ̸=p[cpjcp′j ]

] (5)

Note that this statistic reduces to the classical version of Cohen’s Kappa for the
case of k = r = 2.

3 Measuring agreement against a group of experts

Let r denote a new classifier (or expert) with rij being unity if r assigns a label
lj to instance ii and zero otherwise. Since we assume r to be a discrete classifier,
rij can be interpreted in a probabilistic sense.

In this discrete classification scenario, one way to measure the agreement of r
against R would be to measure the agreement of label assigned by r against the
proportion of experts from R over certain class of interest lj while controlling for
other classes (that is, mapping it to a binary problem by assigning 1 to lj and
0 to all other classes), in a fashion similar to the IntraClass kappa Coefficient
(ICC) (Kraemer 1979). Similarly, an empirical estimate over the expectation of
this statistic (the chance agreement) could be obtained by marginalizing over this
proportion (under variable assumption of R sampled from R for each instance)
in conjunction with the label assigned by r. Using these and then adjusting for
the maximum achievable agreement can give us the extent to which r agrees with
R. This one-against-all approach can then be extended to multi-class scenario
by iterating over classes with a different lj being set to 1 in each iteration.
This is the approach adopted by Vanbelle and Albert (2009), referred to here
as κva. However, the problems with this approach in the fixed experts’ group
scenario, are obvious. First is, of course, related to its formulation which ignores
interaction biases over classes other than the class of interest since these classes
are lumped together while mapping the problem to the binary case (although
the parameter estimation takes the general form and is directly computable).
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Moreover, due to the implicit assumption over variable R ∈ R, it marginalizes
over the expert biases. We propose an alternate measure for the fixed R case
based on the consideration of the κS measure derived above.

Extending our notion of pairwise agreement between experts in R on each
example, the overall observed agreement between r and R can be obtained as:

Ao = Ei∼S [Ao(ii)] =
1

n

n∑
i=1

Ao(ii) =
1

n

n∑
i=1

k∑
j=1

rijAo(ii, l
j) (6)

where Ao(ii) is the agreement between r and the group of raters over all the
classes, with Ao(ii, l

j) as defined in Equation 2.
Next, Ae for this case denotes the overall chance agreement between r and

the group of experts R. Its empirical estimate can be obtained analogous to our
previous discussion as:

Ae =
k∑

j=1

rj ·Ae(l
j) =

k∑
j=1

[
rj ·

1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ ̸=p

[
cpj
n

cp′j

n

]]
(7)

where rj = Ei∼Srij = 1
n

∑n
i=1 rij is the probability of the rater r classifying a

random example to class lj .
The next important quantity to evaluate is the maximum achievable agree-

ment Amax, between r and the group of expertsR. Note that the earlier measures
assumed this to be unity (see, e.g., (Schouten 1982)). This turns out to be a sig-
nificant limitation since Amax = 1 if and only if all the raters in R agree on
all the instance labels and further when r agrees with these labels on all the in-
stances. That is, this assumes κS to be unity as a pre-condition for the measure
to achieve perfect score. However, this does not reflect the goal of assessing the
extent of agreement of the classifier labeling with that of the group R.

This is a crucial point. What we are interested in is the maximum agreement
that the classifier r can achieve against the combined labelings of R indepen-
dent of the extent of agreement achieved among experts in R (of course still
requiring at least some degree of inter-expert agreement for group qualification).
Hence, the maximum agreement that r can achieve would be when it assigns a
labeling such that each assigned label corresponds to the label on which there is
a maximum agreement actually obtained among the experts in R.

With this consideration, we define the maximum possible agreement in our
case as:

Amax =
1

n

n∑
i=1

max
j

Ao(ii, l
j) =

1

n

n∑
i=1

max
j

( 1

r(r − 1)
(cij(cij − 1))

)
(8)

Hence, replacing Ao, Ae and Amax from Equations 6, 7 and 8 in Equation 1, the
new measure, denoted as S, of agreement between a classifier and a fixed group
of experts becomes:

S =
1
n

∑n
i=1

[∑k
j=1 rijAo(ii, l

j)
]
−
∑k

j=1 rj ·Ae(l
j)

1
n

∑n
i=1 maxj Ao(ii, lj)−

∑k
j=1 rj ·Ae(lj)
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Notice that, unlike the measure of Vanbelle and Albert (2009), S enables incor-
porating the expert-specific bias in calculating both Ae and Amax by considering
R to be fixed. Also, S can be evaluated directly over all classes unlike the former.

4 Analysis

We present another main result of this work in the form of a theorem upper
bounding the variance of the proposed κS statistic and showing how this is a
more stable measure than κF in the fixed-experts case. The arguments for the
variance analysis for various agreement measures follow from the large sample
estimation of moments in the statistics literature (see, for instance, (Rao 2001)).
While we relegate the detailed analysis of empirical variances and associated
statistical significance tests for these statistics to the longer version of the paper,
we nevertheless deem it important to discuss the following theoretical result.

Theorem 1. Let κF and κS denote, respectively, the agreement statistics of Fleiss
(1971) and that proposed in Equation 5 computed on a population (dataset) with
large sample-size n where each of the sample has been assigned one of k labels by
a fixed group of r experts. If σ2(κ) denotes the variance of κ then we have that:

σ2(κS) ≤ σ2(κF )

with equality satisfied when the experts emulate the pool.

Proof. The hypothesis of no agreement suggests labeling according to E(A) (or
Ae). Let us analyze this chance agreement Ae with regard to κS as defined
in Equation 4. Under our formulation we can model the bias of each expert
assigning example i ∈ S to a class lj , j ∈ {1, . . . , k} as a multinomial b. That is,
the multinomial bp(l

j) models the probability with which the expert p assigns
a label lj to a random example i chosen from S. The overall bias of expert p
can then be modeled by a vector bp = (bp(l

1), . . . , bp(l
k)). Hence, the chance

agreement Ae essentially models these probabilities of the pairs of experts for
each class which for the purposes of our analysis can be considered a constant.
Therefore, the variance of κS depends basically on the variance of the observed
agreement Ao of Equation 2. Then for large samples, for any agreement statistic

A, the variance of the metric κ = ES(A)−E(A)
max(A)−E(A) can be obtained as:

σ2(κ) =
σ2(A)

[max(A)−E(A)]2

For the case of κS statistic, disregarding the constants, the expectation of the
agreement statistic (denoted with superscript κS), is:

E(AκS ) =
k∑

j=1

1

r(r − 1)

∑
p∈R

∑
p′∈R,p′ ̸=p

[
vpj v

p′

j

]
(9)
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Consequently, the variance becomes:

σ2(AκS ) =
∑
p∈R

∑
p′∈R,p′ ̸=p

[ k∑
j=1

(vpj v
p′

j (1− vpj − vp
′

j )) + (

k∑
j=1

vpj v
p′

j )2
]

(10)

Similarly, for the case of κF , without differentiating between the experts (un-
der the variable expert assumption) and disregarding constants, the expectation
of the agreement term becomes,

E(AκF ) =
k∑

j=1

c2.j (11)

Now, the variance σ2(AκF ) , using Equation 2 for Ao, can be approximated as:

σ2(
∑
j

c2ij) = 2r(r − 1)[
∑
j

(c2j )− (2n− 3)(
∑
j

(c2j ))
2 + 2(n− 2)

∑
j

(c2j )] (12)

Note, however, the crucial difference between the no agreement hypotheses as-
sumed by κS and κF . In the case of former, we assume that experts label the
instances according to their respective biases while in the case of latter, we as-
sume that the labeling occurs in agreement with the marginals of the pool of
experts.

Hence, it can be seen that the expectation E(AκS ) of Equation 9 is up-
per bounded by E(AκF ) of Equation 11. Similarly, Equation 12 upper bounds
Equation 10. Now, since both κS and κF consider all possible expert pairs, the
constants would be identical, i.e. n2r2(r−1)2 in the denominator for the variance
calculation of both measures. This concludes the proof. 2

Using similar arguments, the variance of S can be seen to be upper bounded by
the variance of κva. The sampling variances for S and κva can be computed using
the Jackknife or leave-one-out method (Efron and Tibshirani 1993, Japkowicz
and Shah 2011). For S, let S\i denote the agreement on the label assignments
of all the instances in S except ii. Calculating S\i repeatedly n times leaving
a different instance each time and subsequently averaging it can then yield the
pseudovalues.

4.1 Properties and Behavior

The marginalization argument for estimating Ae, such as that in κF , can result
in excessively pessimistic agreement estimates. That is, while such measures
estimate the observed agreement3 they do not measure the chance probabilities

3 The pairwise consideration highlight that it would take at least 2 experts to agree
on any given instance for the observed agreement to be non zero.
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over agreements. As a result the inter-expert correlations, partly as a result of
the variable experts assumption, are ignored. This not only results in a loose
estimate of Ae but can also yield less meaningful (even unwarranted negative)
values of agreement measure even when the empirical evidence is to the contrary,
for smaller values of Ao. We will illustrate this in the next Section. In the fixed
expert case, κS offers better consistency in the estimation of Ao and Ae.

Similarly, while κva depends on the proportion of experts with maximum
labels when computing Amax, S depends on the labels on which the pairwise
agreement over R is maximum. Hence, even when all the experts disagree over
labels for all the instances, Amax is not zero for κva while it is zero in the case
of S. The latter is indeed desirable in the fixed expert group case since in the
event of no agreement among the experts themselves (extreme variability), the
agreement of the classifier with any individual expert, being unrepresentative of
the group agreement, is rendered meaningless (even more so when k > r). Similar
differences exist in the computation of other quantities. The marginalization
argument when applied to the case of calculating Ae can also result in an overly
conservative, and sometimes less meaningful, estimates of κva in contradiction
with the the empirical evidence (as we will see in the next Section). There is
an important point to be made here. While, analytically, it can be seen that
κF is more conservative than κS , such a relationship need not exist between
κva and S since their estimates would depend not only on the expert labels but
also on their subsequent agreement with the new classifier. The contribution of
individual expert (even when it disagrees with all the others) is not zero for both
κF and κva.

5 Empirical Results and Discussion

We compare the behavior of the most commonly employed κF metric for inter-
expert agreement measurement against the proposed measure κS . With regard to
estimating the agreement of a classifier with group of fixed experts, we compare
the generalization proposed by Vanbelle and Albert (2009) denoted as κva with
the proposed S metric.

For both sets of comparisons, we use 4 different sized multi-class datasets
from UCI repository (Asuncion and Newman 2007) over WEKA implementa-
tions of 6 different classifiers in addition to their true labels. Further, we also
illustrate the limitations of κF in the fixed experts case with the help of syn-
thetic data. The main aims of the simulations presented here are two-fold: i)
illustrating the differences between the compared measures; and ii) highlighting
the discrepancies in the estimation of variable expert assumption based mea-
sures when applied to the fixed experts cases making them unsuitable for the
purpose. The datasets used include CMC (1473 instances, 3 classes), Car (1728
instances, 4 classes), Iris (150 instances, 3 classes) and Glass (214 instances, 7
classes) while the learning algorithms used are Support Vector Machine (with
linear kernel), Naive Bayes, C4.5 Decision Trees, 3-Nearest Neighbor, Ripper
and a Conjunction Rule learning algorithm. The reported results are over 10-
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fold Cross Validation with default parameter values over learning algorithms.4

Finally, we illustrate these differences in a real world example of Syphilis Serogen
data (Williams 1976). Novel venues such as AMT can also yield relevant data for
such simulations. While data from learning from crowds scenario are sometime
publicly available (Snow et al. 2008), we are not aware of any relevant AMT
datasets available yet for the fixed experts case.

5.1 Evaluating Inter-expert Agreement

Let us first consider a simple synthetic dataset of 200 instances labeled by 4
experts (E1, E2, E3 and E4) into one of the 4 classes (L1, L2, L3 and L4) and
consider 5 different illustrative scenarios. The first label configuration “Hypo0”
denotes the case when on each instance all four experts disagree. We do this by
simply making E1 assign L1, E2 assign L2 and so on to all instances. Next, we
flip the first 100 labels of E1 from L1 to L2 and the last 100 labels of E2 from L2
to L1 so that these two experts agree on all the labels while still disagreeing with
E3 and E4 who themselves are in disagreement. This case is denoted “Hypo2”.
Next, from “Hypo2”, we let E3 assign L1 to the first 100 instances and L2 to last
100 instances so that E3 agrees with both E1 and E2 yielding dataset “Hypo3”.
We then obtain a dataset “Hypo4” where all experts assign L1, L2, L3 and L4
to the respective subsets of 50 instances and are in complete agreement. Finally,
We obtain a dataset “Hypo4a” that too simulates all experts in agreement but
this time all the experts assign L1 to the first 100 instances and L2 to last 100
instances. (Note that the suffix in the name of each synthetic variation denote
the number of experts in complete agreement). The results are presented in
Figure 1(a).

(a) Synthetic Cases (b) UCI Data

Fig. 1. Comparison of the proposed κS (kappa-S in figures) statistic against the Fleiss’
Kappa coefficient κF . Also shown are the corresponding estimates of chance agreements
in both cases. An absence of a bar indicates a zero value.

In the case of “Hypo0”, Ae > 0 for κF so that κF < 0. Note here that
there is a strict heterogeneity among experts’ biases in this case (e.g. E1 never

4 Note that model selection is not our main concern here since we aim to show the
difference in the agreement estimates.
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assigns any label other than L1, and so on) and the estimation of Ae using
the marginalization argument is not meaningful since it does not reflect the
probabilities of random label assignments. Unlike κF , Ae = 0 for κS . Similarly,
the marginalization argument over Ae results in negative value for κF in the
event of partial agreement in the case of “Hypo2” data where E1 and E2 agree
on all the instances. Again, this is not desirable since, here, both the Ao and Ae

are solely based on E1 and E2 for classes L1 and L2. Keeping in view the label
assignment in these cases, κS gives a more realistic estimate. Note that κF → κS

as Ao → 1. This can be seen in the case of “Hypo4” and “Hypo4a” datasets.
However, even when Ao for both the measures is 1, the chance agreement is not
treated in the similar manner in these two cases.

Next, we compare the inter-expert agreement between the set of 7 label sets
obtained on the 4 UCI datasets, one from each of the 6 classifiers, and the true
labels of the instances, using both the κF and κS measures in Figure 1(b). As a
result of optimistically estimating the chance agreement by marginalization over
experts, κF is consistently more conservative than κS . However, the measures
seem to converge with increasing levels of agreement with κF → κS as the
agreement approaches unity. An example can be seen in the case of Iris datasets
where classifiers typically obtained a very high accuracy rate and are in high
agreement. However, the gap between the two measures is higher for moderate
to low agreement values.

5.2 Evaluating agreement against a group of fixed experts

We consider the UCI datasets to compare S against κva. For each case, the
experts’ group is simulated by taking into account the true labels along with
the two classifiers achieving highest 10-fold accuracy on each dataset. The (un-
weighted) κva and S are then estimated for each of the remaining classifiers
against the group. The results are presented in Figure 2. As can be seen, κva

consistently results in a conservative agreement estimate as compared to S in
these cases (at least partly due to marginalization). Note, in particular, the
case of Car and CMC datasets over the comparison of conjunction rule learner
against expert labels. While in both cases Conjunction rule learner obtains a
trivial classifier assigning class 1 to all the instances, it should be noted that this
class is highly overrepresented in these datasets (about 70% in CAR and 42% in
CMC). While κva gives a less meaningful null estimate in both these cases, this
scaling is better captured by the S measure as can be seen in the last column of
Figure 2. Also, the two measures seem to converge as Ao approaches unity (see
e.g., the Iris dataset over C1, C2 and C3 in Figure 2).

5.3 Illustration on real data

We illustrate the proposed indices of agreement on the Syphilis Serogen data
of Williams (1976) who presented result obtained by three reference laboratories
(denoted by Ref-1, Ref-2 and Ref-3) and an additional participant laboratory
(denoted by T) on 28 specimens (data is shown in Table 1). Each specimen
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Fig. 2. Comparison of the proposed S measure against the κva statistic for measuring
the agreement of isolated classifier (on horizontal axis) against expert labels composed
of the actual labels and outputs of SVM and Decision Trees for the case of Car, CMC
and Iris datasets; and of actual labels along with outputs of Ripper and 3-NN in the
case of Glass dataset. C1 and C4 represent 3-NN and Conjunction Rule respectively
in all datasets. C2 and C3 represents, respectively, SVM and NB in the case of Glass
data while NB and Ripper in the case of the other three datasets.

was classified into one of the three classes viz. Non Reactive (NR), Borderline
(BL) and Reactive (RE). The additional participant laboratory also classified
the 28 specimen into one of the three classes. The same dataset was also used
by Vanbelle and Albert (2009, Table 3). For both κF and κS , we get Ao =
0.81 between the three reference laboratories. The difference, analogous to the
synthetic cases, appears in terms of optimistic estimate of Ae = 0.412 in the case
of κF . In the case of κS , we obtain Ae = 0.272. Hence, we obtain κF = 0.676
and κS = 0.738. We can see how κF results in a pessimistic agreement estimate
due to overestimating chance agreement. Also, note the difference in the results
obtained for κS as compared to the agreement statistic such as ICC which was
found to be 0.68 as reported by Vanbelle and Albert (2009).

Similarly, when comparing the three reference laboratories to laboratory T,
we obtain, for κva: Ao = 0.655, Ae = 0.362 and Amax = 0.893. On the other
hand, for S, we get: Ao = 0.571, Ae = 0.105 and Amax = 0.81. This gives
κva = 0.551 and S = 0.662. These results too demonstrate the manner in which
the two measures differ in the estimation of various quantities.

6 Related Work

In addition to Fleiss’ coefficient, various other general inter-expert agreement
measures such as the well known ICC (Kraemer 1979) or context-specific mea-
sure of Schouten (1982), have also appeared (e.g., see (Kuncheva 2004) for a
discussion on some such measures in the context of classifier fusion). However,
these measures too typically marginalize over the experts.

In this respect the proposed κS statistic is more in line with the arguments
of Berry and Mielke Jr (1988) who propose a generalization over interval mea-
surements and multiple experts by way of measuring the extent of disagreements
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# T Ref-1 Ref-2 Ref-3

1 RE RE RE RE
2 RE RE RE RE
3 BL NR NR NR
4 BL NR NR NR
5 BL NR NR NR
6 RE RE RE RE
7 BL NR NR NR
8 RE RE RE RE
9 NR NR NR NR
10 NR NR NR NR
11 RE RE RE RE
12 RE RE BL BL
13 RE RE RE RE
14 RE RE BL BL
15 RE RE RE RE
16 RE RE NR BL
17 RE RE NR BL
18 RE RE RE RE
19 RE RE RE RE
20 BL BL NR NR
21 RE RE RE RE
22 BL NR NR NR
23 BL BL NR NR
24 BL BL NR NR
25 RE RE RE RE
26 NR NR NR NR
27 RE RE RE RE
28 NR NR NR NR

Table 1. Syphilis Serogen data of (Williams 1976) used in Section 5.

between the experts in the l2-norm setting. However, the disagreement measured
by the ∆ function there need not reflect the corresponding agreement under the
l2-norm. Furthermore, it requires rescaling the label assignments.

With regard to measuring the agreement against the group of experts, an-
other commonly applied approach is the consensus approach where, for each
instance, the label assigned by a majority (defined by a consensus threshold)
of the experts is considered as the true label (see, for instance, (Soeken and
Prescott 1986, Smith et al. 2003)). This simplifies the subsequent evaluation
against a classifier by mapping the problem to a deterministic label match-
ing problem amenable to more conventional techniques such as Cohen’s kappa.
However, such consensus labeling makes the output dependent on the consensus
threshold and has serious limitations. In addition, issues such as not account-
ing for experts’ dispersion as well as difficulty in dealing with instances with no
consensus makes this approach highly contentious (Eckstein et al. 1998, Salerno
et al. 2003, Miller et al. 2004).

Approaches proposed to bypass such consensus requirement such as those
of Schouten (1982), Williams (1976) and Light (1971) either do not address the
problem of interest directly or pose issues such as introduction of bias or ignoring



14 Mohak Shah

interdependence of experts (Vanbelle and Albert 2009). Note, in particular, that
the approach of Schouten (1982), even though applied in fixed expert settings,
disregards the interdependence of experts when measuring agreement of one
expert against others in the same group.

Another important caveat in above approaches lies in the assumption over
the maximum achievable agreement between the classifier and the group of ex-
perts being unity. This caveat has profound implications since it makes the
assessment of classifier performance dependent on the inter-expert agreement.
Such measures, hence, can achieve a perfect score for the classifier only when
the inter-expert agreement is unity which essentially obviates the need for (and
utility of) multiple experts altogether. Vanbelle and Albert (2009) also noted
these limitations and proposed an alternative general measure (κva discussed
earlier). As mentioned above, κva too followed the marginalization argument in
a binary classification case. It was then extended to the multi-class case in an
indirect manner using an iterative one-against-all strategy.5 We compared κva

against S on various criteria above.

7 Conclusion and Future Work

In this paper, we noted the main limitations of measures based on marginaliza-
tion over experts rendering them unsuitable for application in the typical fixed
experts’ group scenario. Among the crucial issues lie the excessively conservative
agreement estimate obtained by the inter-expert agreement measures such as κF .
Moreover, these measures, as seen in both theoretical arguments and empirical
results, can yield less meaningful values when the heterogeneity in the expert
biases is high. We also proposed two novel statistics, respectively, to measure
inter-expert agreement (κS) between, and agreement of a classifier against, a
fixed group of experts (S) in the general case of multiple classes and multiple
experts. The main advantage of the proposed measures can be seen in terms of
their accounting for expert specific biases and correlations yielding tighter agree-
ment assessments. The proposed measure S also scales the maximum achievable
agreement in accordance thereby allowing more meaningful characterization of
classifier’s performance that is independent of the agreement achieved within
the expert group. Finally, in contrast to the marginalization based measures,
κS reduces to the classical Cohen’s κ in the binary classification case over two
label sets. The future work includes investigating the behavior and dependence
of proposed statistics, as well as extending them, to testing scenarios such as
asymmetric loss, bias, prevalance and class imbalance. Another area worth in-
vestigating is the sample size requirement for the data over classes since the
expert specific biases are obtained from the data empirically. A sparse class
can in principle affect such estimates adversely (of course, even in this case,
the assessed biases are best that can be obtained in accordance with both the
maximum likelihood as well as information-theoretic arguments). Finally, the
proposed measures can also be generalized for probabilistic classifiers.
5 This effectively generalizes Fleiss’ kappa, or alternatively Scott’s π statistic and not
Cohen’s kappa.
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