MS Lesion Segmentation using Markov Random Fields

Nagesh Subbanna¹, Mohak Shah^{1,3}, Simon Francis^{2,3}, Sridar Narayanan², D. Louis Collins², Douglas Arnold^{2,3}, Tal Arbel¹

¹Centre for Intelligent Machines, McGill University ²Montreal Neurological Institute, McGill University ³NeuroRx Research, Montreal

Workshop on Medical Image Analysis on Multiple Sclerosis

MIAMS-2009

September 20, 2009

Mohak Shah

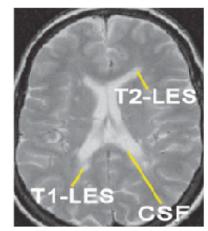
Outline

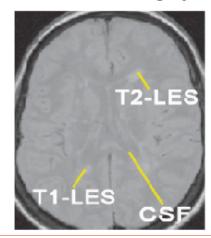
- Problem Context
- Automatic Lesion Detection Approaches
- A complete MRF based approach
- Empirical Results
- Conclusion and Future work

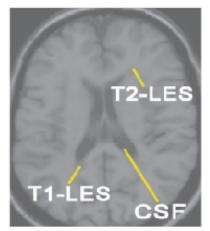
Problem Context

- MS Lesions
 - hyper-intense w.r.t. WM in T2w
 - hypo-intense w.r.t. WM in T1w
- □ PDw helps in distinction from CSF
- Multispectral space (T1w, T2w, PDw) = I

T2-weighted (T2w) Proton density (PD) T1-weighted (T1w)







Approaches to Automatic Detection

- Various Approaches
 - Contouring (Grimaud et al. 1996), Fuzzy Reasoning (Udupa et al. 1997), connected component analysis (Ge et l. 2001), atlas-based (Al-Zubi et al. 2002), geometric models (Yang et al. 2004), clustering (Francis, 2004), Spectral gradients and graph cuts (Lacoeur et al. 2008)
- Model based approaches: Lesions as outliers
 - Van Leemput et al. (2001)
- ☐ Markov Random Fields (MRFs) (Harmouche, 2006)
 - Bayesian approach: MRF applied after labeling solution obtained

Motivation

- Multi-spectral intensities can model the tissue behavior relatively accurately
- Local contextual information
 - Francis 2004, Harmouche, 2006
- Probabilistic Approach useful
- Proposed Approach: Explicit lesion modeling in MRFs

Understanding MRFs

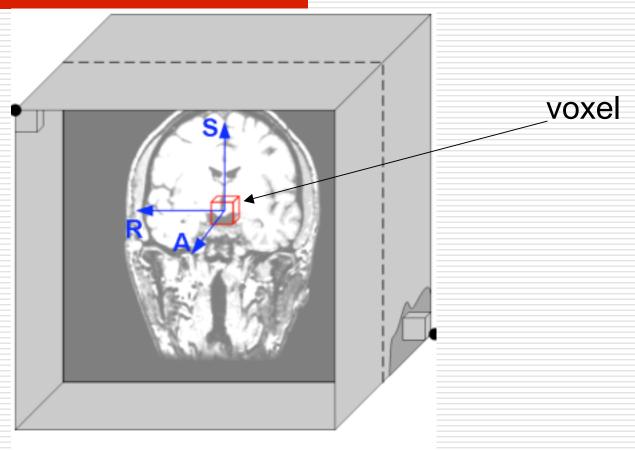
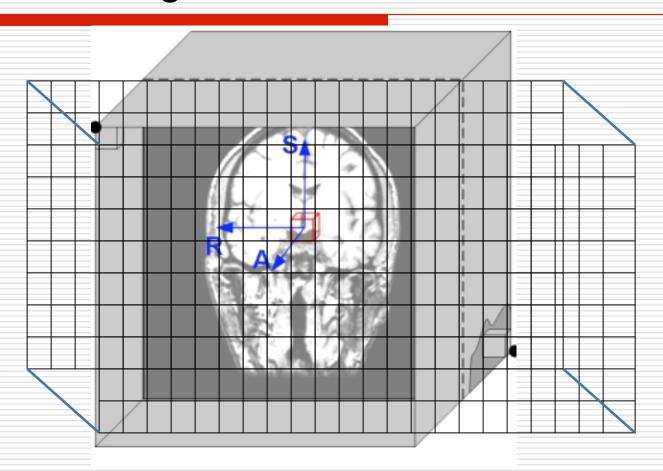
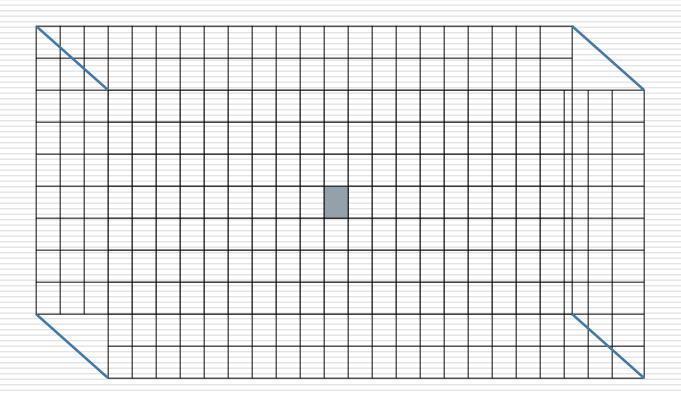


Image Source: Understanding Freesurfer, Its Process and Data, http://www.wideman-one.com

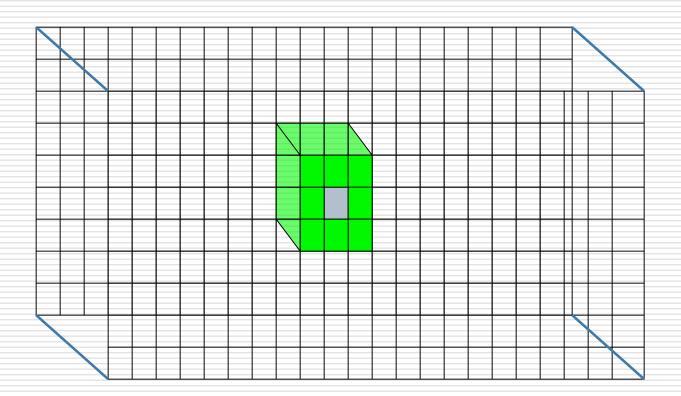
Understanding MRFs



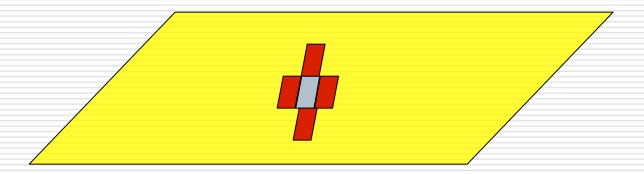
Understanding MRFs: A voxel



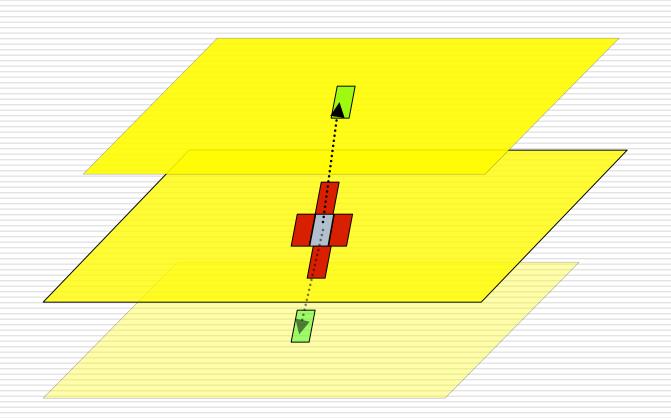
Neighborhood



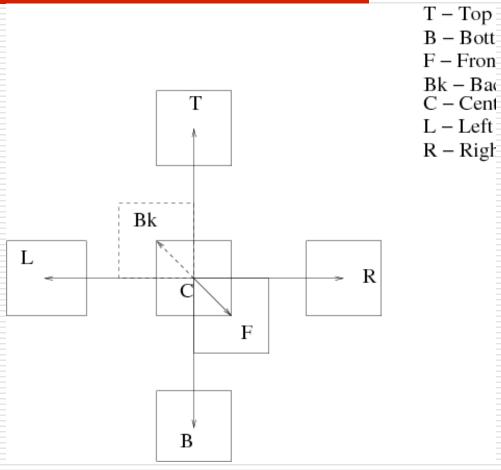
Sub-neighborhood



Sub-neighborhood

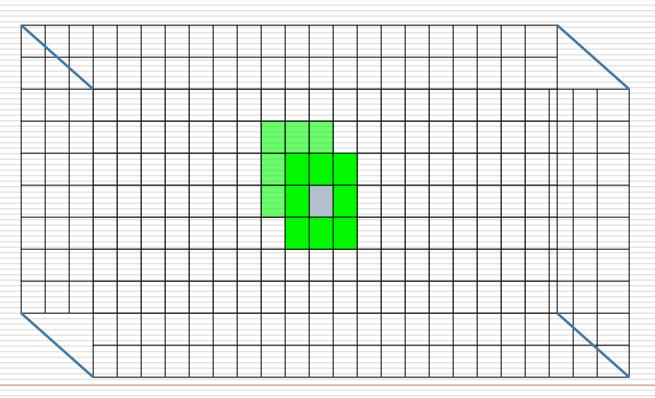


A 7-voxel Clique



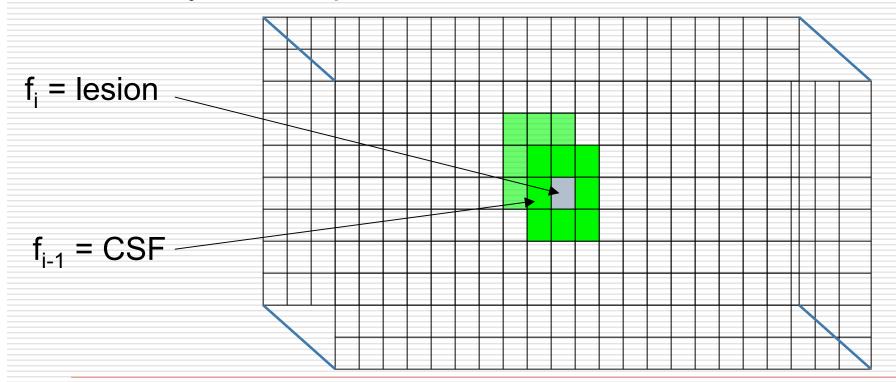
Label Assignments

 \square Let $\mathbf{f} = (f_1, f_2, ..., f_n)$ be a label assignment



Label Assignments

- \square Let $\mathbf{f} = (f_1, f_2, ..., f_n)$ be a label assignment
- ☐ Many such **f**'s possible



Modeling Label Assignments

The f's can be modeled as a Gibbs distribution

$$P(\mathbf{f}) = \frac{1}{\sum_{\mathbf{f} \in \mathcal{F}} exp(-\frac{1}{T}U(\mathbf{f}))} exp(-\frac{1}{T}U(\mathbf{f}))$$
(1)

Modeling Label Configurations

The f's can be modeled as a Gibbs distribution

$$P(\mathbf{f}) = \frac{1}{\sum_{\mathbf{f} \in \mathcal{F}} exp(-\frac{1}{T}U(\mathbf{f}))} \underbrace{exp(-\frac{1}{T}U(\mathbf{f}))}_{\mathbf{f}}$$
(1)
$$\mathbf{Energy Function}$$

Modeling Label Configurations

The f's can be modeled as a Gibbs distribution

$$P(\mathbf{f}) = \frac{1}{\sum_{\mathbf{f} \in \mathcal{F}} exp(-\frac{1}{T}U(\mathbf{f}))} exp(-\frac{1}{T}U(\mathbf{f}))$$
(1)

■ Minimize U(f) to Maximize P(f)

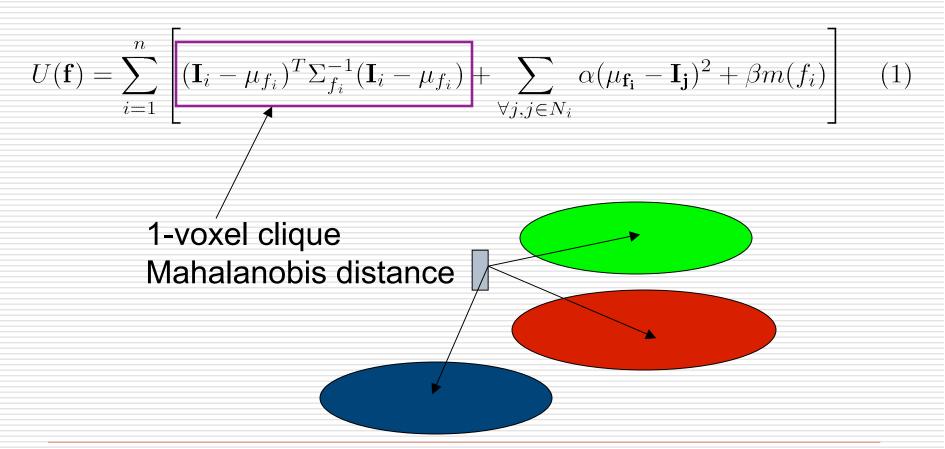
Mohak Shah

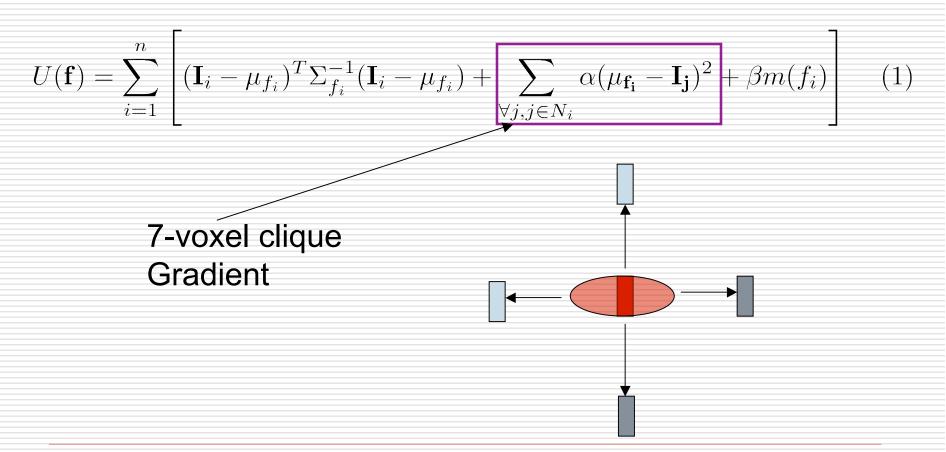
- □ U(**f**) takes into account
 - voxel intensity behavior (1-voxel clique); and
 - local (sub-)neighborhood information (7-voxel clique)
- Clique sizes
 - compromise between the amount of neighborhood info and computational complexity

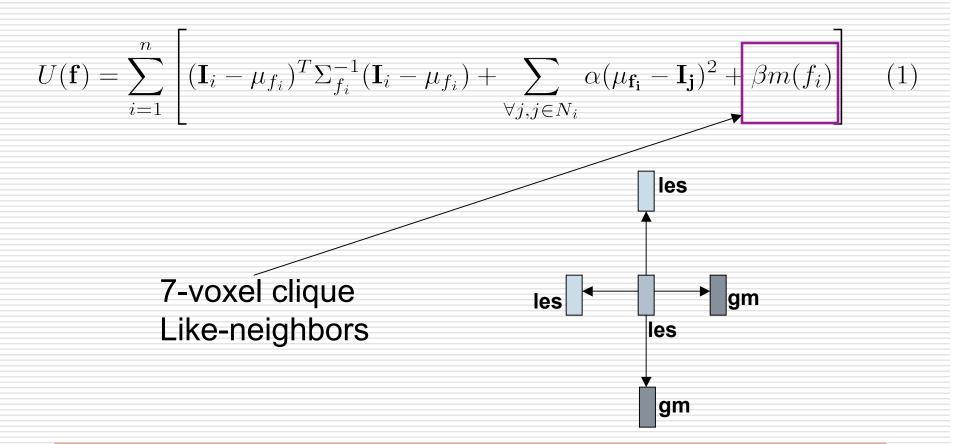
The Energy Function: Characterizing Neighborhoods

- Characterize 1-voxel cliques
 - Gaussian Assumption over tissue intensity behaviors
- Characterize nature of 7-voxel cliques
 - Homogenous (Positional Independence)
 - Isotropic (Orientational Independence)

$$U(\mathbf{f}) = \sum_{i=1}^{n} \left[(\mathbf{I}_i - \mu_{f_i})^T \Sigma_{f_i}^{-1} (\mathbf{I}_i - \mu_{f_i}) + \sum_{\forall j, j \in N_i} \alpha (\mu_{\mathbf{f_i}} - \mathbf{I_j})^2 + \beta m(f_i) \right]$$
(1)







$$U(\mathbf{f}) = \sum_{i=1}^{n} \left[(\mathbf{I}_{i} - \mu_{f_{i}})^{T} \sum_{f_{i}}^{-1} (\mathbf{I}_{i} - \mu_{f_{i}}) + \sum_{\forall j, j \in N_{i}} \alpha \mu_{\mathbf{f_{i}}} - \mathbf{I_{j}})^{2} + \beta n(f_{i}) \right]$$

$$(1)$$

$$\mathbf{Control Parameters}$$

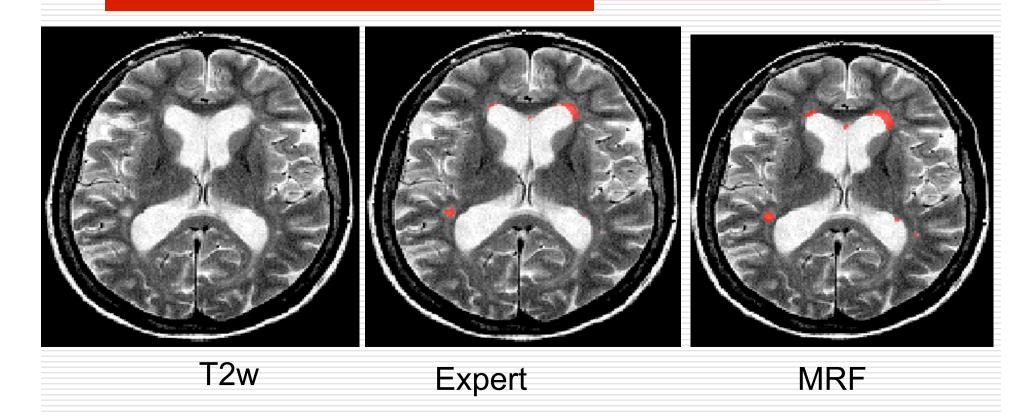
The Algorithm

- Use a set of training MRI volumes to obtain distributions of individual tissue types
 - Labels: WM, GM, CSF, T1les, T2les, Bkg
- \square Train the algorithm to estimate control parameters α and β
- \square For any new MRI volume, apply MRF algorithm with α and β from training
- Optimize over f using Simulated annealing
- Smooth using b-splines

Empirical Results

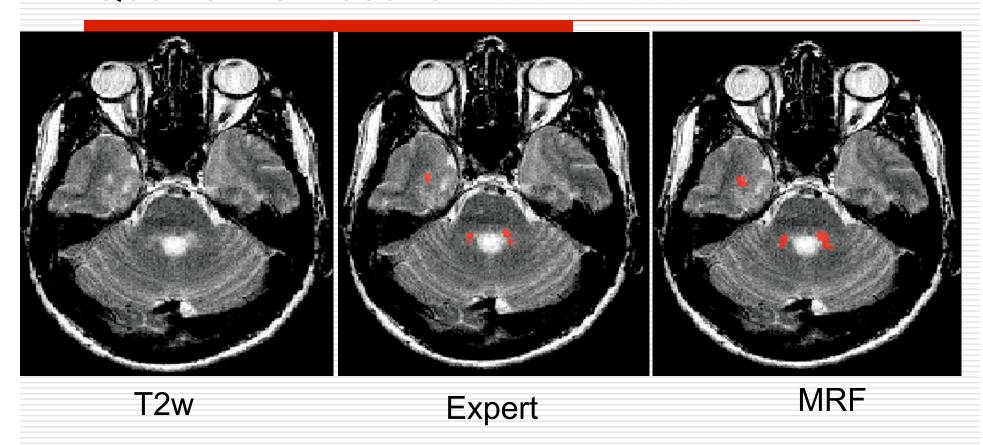
- Philips scanner multi-spectral data from 25 pre-segmented
 MRI volumes
 - 15 MRI volumes used for training
 - 10 MRI volumes used for evaluation
- Lesions identified by a consensus of 5 experts forming silver standard for evaluation
- \square κ -metric for reporting results

Qualitative Results: Sparse lesions

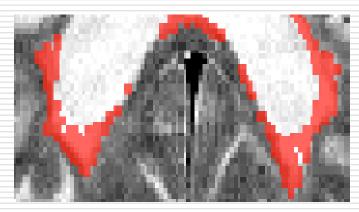


Qualitative Results: Cortical lesions

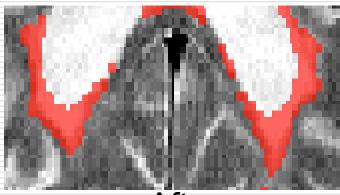
Qualitative Results: Posterior Fossa



Smoothing

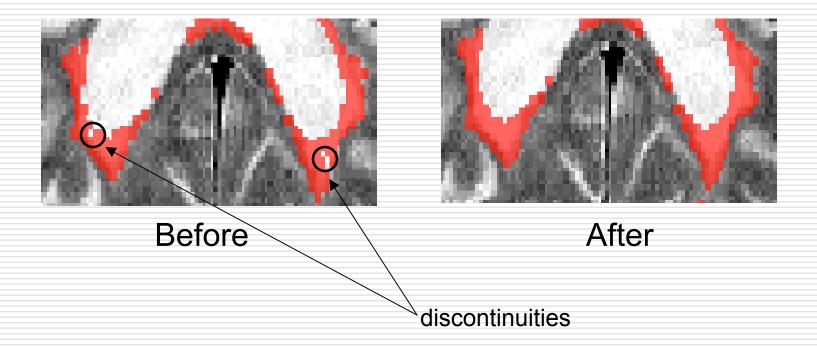


Before



After

Smoothing



Quantitative Results

MRF Results (agreement with silver standard)

Patient	1	2	3	4	5	6	7	8	9	10	Mean
κ (PF)	0.61	0.69	0.48	0.56	0.69	0.74	0.73	0.63	0.62	0.68	0.64
κ (no PF)	0.63	0.70	0.50	0.58	0.71	0.74	0.74	0.64	0.66	0.7	0.67

Raters' Agreement

Median κ	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5
Expert 1	-	-	-	-	-
Expert 2	0.68	-	-	-	-
Expert 3	0.57	0.64	-	-	-
Expert 4	0.56	0.62	0.54	-	-
Expert 5	0.65	0.76	0.67	0.60	-

False Positive and False Negative Rates

Patient	False +ve Rate	False -ves Rate
1	0.003	0.13
2	0.002	0.06
3	0.001	0.05
4	0.004	0.06
5	0.003	0.09
6	0.0004	0.19
7	0.0006	0.11
8	0.0003	0.14
9	0.001	0.12
10	0.005	0.06
Mean	0.002	0.10

Conclusion and Future Work

- MRF approach gives encouraging results on real MRI lesion segmentation
- Relatively better performance on Posterior Fossa

To Do:

- Loosening the homogenous and isotropic assumption on neighborhood
- Optimizing the framework to incorporate smoothing
- Exploiting the anatomical dependencies of lesion occurrences

Thank You