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The Need for Intensity Normalization
 Variations in MRIs

 Acquisition protocols;
 Multi-site scans; scanner manufacturers; models from same

manufacturer;
 Effect of pathology; Varying stages of disease

 Lack of standard scale makes the generalization of intensity
behavior difficult

 Reliance on assumptions over distribution of tissue intensities
 large variations in intensity ranges can violate these
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The Need for Intensity Normalization

 These variations are accounted for by

 Standard acquisition protocols
 Intensity in-homogeneity correction
 Intensity Normalization (Standardization)
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Approaches to Intensity Normalizations

 Various Approaches
 (Christensen, 1996); (Weisenfeld and Warfield, 2004); (Hellier,

2003); (Jäger et al, 2006)

 Main drawback
 Accuracy vs. Speed vs. Adaptability

 Nyul Approach (Nyul et. al., 1999, 2000)

 Best of both worlds
 One of the most widely approaches
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Nyul Intensity Normalization (Nyul et al. 1999, 2000)

 Extensive Evaluation
 available on inter- and intra-patient variations
 But not on multi-site multi-scanner multi-spectral data
 Neither in the presence of pathology
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Nyul Approach in a nutshell

 Decile Formulation (Nyul et al. 2000)

 Two stage approach

 Training
 Input a value range for forming a standard scale
 Determine standard scale landmarks (mapping points)

from the training data

 Transformation
 Use standard scale for a piece-wise linear mapping of

input image to standard scale
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The Intensity Normalization (Training):
Intensity of Interest (IOI)
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Evaluation of Nyul approach
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Data Acquisition (data courtesy NeuroRx Research, Montreal)

 21 multi-spectral (T1w, T2w and PDw) MRI scans
 7 subjects each from GE, Philips and Siemens

 Within each sub-group, patients with
 Varying ventricle sizes
 Varying MS lesion loads

 Protocols standardized to obtain similar contrasts

 Each MRI volume with
 1x1x3 mm resolution
 50 slices (vertex to the foramen magnum)
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Pre-processing

 Image Modalities’ Alignment
 Image modalities aligned to a common stereotaxic

space for deterministic spatial voxel mapping

 Intensity in-homogeneity correction
 To account for scanner-specific variations
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Tissue Sampling
 “Pure” tissue samples

 Tissue types
 Cortical Gray Matter (CGM), Deep Gray Matter (DGM), White

Matter (WM), and Cerebrospinal Fluid (CSF)

 1000 manual samples for each tissue per MRI
 about 20 slices (alternate) per brain volume

 Samples obtained both before and after normalization

 Lesions identified automatically followed by expert validations by
5 expert radiologists (consensus)
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Evaluation
 Training

 100 volumes with varying lesion loads and MS pathology
 Standard scale histogram parameters obtained

 Same for all modalities

 Standard scale then used in the Transformation stage

 Evaluation Criteria
 Effect of normalization on heterogenous MRIs

 Multi-site, Multi-scanner (different manufacturers/brands)
 Distributional assumption
 Role of normalization in tissue separation
 Effect of pathology
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Qualitative Evaluation

Un-normalized Normalized

Red: WM, Green: CGM, Magenta: DGM, Blue: CSF, Cyan:Lesions
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Qualitative Evaluation: by manufacturers

GE Philips Siemens
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Quantitative Evaluation

 Tissue behavior in individual modalities

 Effect on Gaussian distribution assumption

 Jeffrey Divergence criterion
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Verifying Gaussian assumptions
 For un-normalized images:

 Calculate intensity histogram for each tissue type from the
input image (bin size 100). Call it D1-u

 Calculate data mean m and covariance c
 Generate a Gaussian at (m, c). Call it D2-u
 Calculate the Jeffrey Divergence between D1-u and D2-u:

JD-u

 For normalized images
 Do as above and calculate JD-n

 Compare JD-u and JD-n
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Hypothesis for Evaluation

 If the data comes from a Gaussian distribution then JD-u
shouldn’t be large

 Further if normalization doesn’t have any effect on data
distribution then the difference in JD-u and JD-n should be
insignificant
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Results
Jeffrey Divergences: All machines

WM GM

CSF Lesions
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Results
WM and GM : Jeffrey Divergences, by Manufacturers
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GE Philips Siemens

Results
CSF : Jeffrey Divergences, by Manufacturers



Mohak Shah MIAMS-2009

GE Philips Siemens

Results
Lesions : Jeffrey Divergences, by Manufacturers
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Tissue Contrast

WM:GM WM:CSF GM:CSF



Mohak Shah MIAMS-2009

Tissue Contrast

WM:GM WM:CSF GM:CSF
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Conclusion and Future Work
 Nyul approach affects the tissue intensity distribution

 Homogenizing same tissues
 Better separation between different tissues

 Makes the distribution amenable to application of segmentation
algorithms

 Robust in the presence of pathology

 To Do:
 Effect on segmentation results
 Lesion load dependent analysis
 Incorporating this knowledge into automatic approaches
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Thank You


