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The Need for Intensity Normalization

[0 Variations in MRIs
B Acquisition protocols;

B Multi-site scans; scanner manufacturers; models from same
manufacturer:;

B Effect of pathology; Varying stages of disease

[0 Lack of standard scale makes the generalization of intensity
behavior difficult

[0 Reliance on assumptions over distribution of tissue intensities
B |arge variations in intensity ranges can violate these
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The Need for Intensity Normalization

[l These variations are accounted for by

B Standard acquisition protocols
B |[ntensity in-homogeneity correction
B [ntensity Normalization (Standardization)
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The Need for Intensity Normalization

Ll

B Intensity Normalization (Standardization)
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Approaches to Intensity Normalizations

[J Various Approaches

B (Christensen, 1996), (Weisenfeld and Warfield, 2004); (Hellier,
2003); (Jager et al, 20006)

[J Main drawback
B Accuracy vs. Speed vs. Adaptability

L1 Nyul Approach (Nyul et. al., 1999, 2000)
B Best of both worlds
B One of the most widely approaches
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Nyul Intensity Normalization (nyul et ar. 1999, 2000)

[1 Extensive Evaluation
B available on inter- and intra-patient variations
B But not on multi-site multi-scanner multi-spectral data
B Neither in the presence of pathology

Mohak Shah MIAMS-2009



Nyul Intensity Normalization (nyul et ar. 1999, 2000)

[1 Extensive Evaluation

O
O on multi-site multi-scanner multi-spectral data
O in the presence of pathology
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Nyul Approach in a nutshell

[1 Decile Formulation (Nyul et al. 2000)
[ Two stage approach

[1 Training
B [nput a value range for forming a standard scale

B Determine standard scale landmarks (mapping points)
from the training data

[1 Transformation

B Use standard scale for a piece-wise linear mapping of
input image to standard scale
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The Intensity Normalization (Training):
Intensity of Interest (I0l)
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The Intensity Normalization (Training):

mapping to Standard scale
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The Intensity Normalization (Training):

mapping to Standard scale
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The Intensity Normalization (Training):

Standard scale
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Standard Scale

The Intensity Normalization:
Standard Scale
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Standard Scale

The Intensity Normalization:
Transformation
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Evaluation of Nyul approach
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Data ACC]U ISition (data courtesy NeuroRx Research, Montreal)

0 21 multi-spectral (T1w, T2w and PDw) MRI scans
B 7 subjects each from GE, Philips and Siemens

1 Within each sub-group, patients with
B Varying ventricle sizes
B Varying MS lesion loads

[0 Protocols standardized to obtain similar contrasts

[1 Each MRI volume with
B 1x1x3 mm resolution
B 50 slices (vertex to the foramen magnum)
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Pre-processing

|
1 Image Modalities’ Alignment

B [mage modalities alighed to a common stereotaxic
space for deterministic spatial voxel mapping

L1 Intensity in-homogeneity correction
B To account for scanner-specific variations
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Tissue Sampling

[J “Pure” tissue samples

1 Tissue types

B Cortical Gray Matter (CGM), Deep Gray Matter (DGM), White
Matter (WM), and Cerebrospinal Fluid (CSF)

1 1000 manual samples for each tissue per MRI
B about 20 slices (alternate) per brain volume
[1 Samples obtained both before and after normalization

[1 Lesions identified automatically followed by expert validations by
5 expert radiologists (consensus)
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Evaluation

[1 Training

100 volumes with varying lesion loads and MS pathology

B Standard scale histogram parameters obtained

[0 Same for all modalities

[J Standard scale then used in the Transformation stage

[0 Evaluation Criteria

B Effect of normalization on heterogenous MRIs
[0 Multi-site, Multi-scanner (different manufacturers/brands)
B Distributional assumption
B Role of normalization in tissue separation
B Effect of pathology
Mohak Shah MIAMS-2009



PDw intensity

1200

Qualitative Evaluation

scatter plot of tissue classes— non—uniformity corrected images scatter plot of tissue classes

1500
1400
1300
1200

1100

PDw intensity

1000

900

800

700
1500

T2w intensity - .
Tiw intensity

T2w intensity

T1w intensity

Un-normalized Normalized

Red: WM, Green: CGM, Magenta: DGM, Blue: CSF, Cyan:Lesions

Mohak Shah MIAMS-2009



Qualitative Evaluation: by manufacturers
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Quantitative Evaluation

[1 Tissue behavior in individual modalities
[1 Effect on Gaussian distribution assumption

[1 Jeffrey Divergence criterion
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Verifying Gaussian assumptions

[0 For un-normalized images:

B Calculate intensity histogram for each tissue type from the
input image (bin size 100). Call it D1-u

B Calculate data mean m and covariance c

B Generate a Gaussian at (m, c¢). Call it D2-u

B Calculate the Jeffrey Divergence between D1-u and D2-u:
JD-u

[0 For normalized images
B Do as above and calculate JD-n

1 Compare JD-u and JD-n
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Hypothesis for Evaluation

1 If the data comes from a Gaussian distribution then JD-u
shouldn’t be large

[l Further if normalization doesn’t have any effect on data
distribution then the difference in JD-u and JD-n should be
insignificant
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Results
Jeffrey Divergences: All machines
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Results
WM and GM : Jeffrey Divergences, by Manufacturers
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Divergence
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Results

CSF : Jeffrey Divergences, by Manufacturers
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Divergence

Results
Lesions : Jeffrey Divergences, by Manufacturers
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Divergence
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Tissue Contrast
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Conclusion and Future Work

[J Nyul approach affects the tissue intensity distribution
B Homogenizing same tissues
B Better separation between different tissues

[1 Makes the distribution amenable to application of segmentation
algorithms

[J Robust in the presence of pathology

[0 To Do:
B Effect on segmentation results
B |esion load dependent analysis
B Incorporating this knowledge into automatic approaches
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Thank You
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