Effectiveness of Intensity Normalization on MRIs of Human Brains with Multiple Sclerosis

Mohak Shah^{1,3}, Yiming Xiao¹, Simon Francis^{2,3}, Douglas Arnold^{2,3}, D. Louis Collins², Tal Arbel¹

¹Centre for Intelligent Machines, McGill University ²Montreal Neurological Institute, McGill University ³NeuroRx Research, Montreal

Workshop on Medical Image Analysis on Multiple Sclerosis

MIAMS-2009

September 20, 2009

Mohak Shah

Outline

- Introduction
- Nyul Intensity Normalization
- Evaluation of Nyul approach
- Qualitative and Quantitative evaluation
- Conclusion and Future work

The Need for Intensity Normalization

- Variations in MRIs
 - Acquisition protocols;
 - Multi-site scans; scanner manufacturers; models from same manufacturer;
 - Effect of pathology; Varying stages of disease
- Lack of standard scale makes the generalization of intensity behavior difficult
- Reliance on assumptions over distribution of tissue intensities
 - large variations in intensity ranges can violate these

The Need for Intensity Normalization

- These variations are accounted for by
 - Standard acquisition protocols
 - Intensity in-homogeneity correction
 - Intensity Normalization (Standardization)

The Need for Intensity Normalization

- These variations are accounted for by
 - Standard acquisition protocols
 - Intensity in-homogeneity correction
 - Intensity Normalization (Standardization)

Approaches to Intensity Normalizations

- Various Approaches
 - (Christensen, 1996); (Weisenfeld and Warfield, 2004); (Hellier, 2003); (Jäger et al, 2006)
- Main drawback
 - Accuracy vs. Speed vs. Adaptability
- Nyul Approach (Nyul et. al., 1999, 2000)
 - Best of both worlds
 - One of the most widely approaches

Nyul Intensity Normalization (Nyul et al. 1999, 2000)

- Extensive Evaluation
 - available on inter- and intra-patient variations
 - But not on multi-site multi-scanner multi-spectral data
 - Neither in the presence of pathology

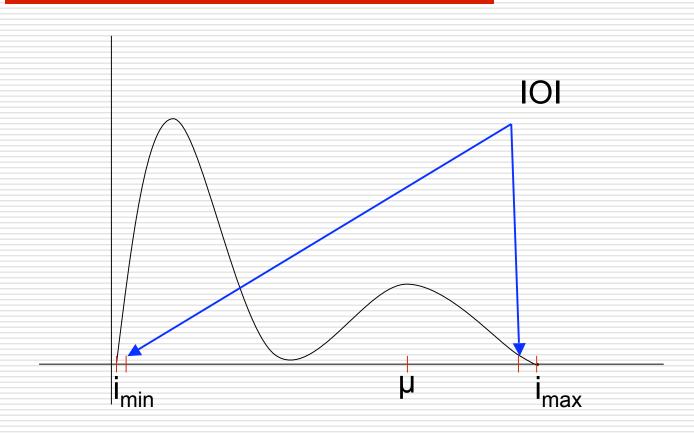
Nyul Intensity Normalization (Nyul et al. 1999, 2000)

- Extensive Evaluation
 - available on inter- and intra-patient variations
 - But not on multi-site multi-scanner multi-spectral data
 - Neither in the presence of pathology

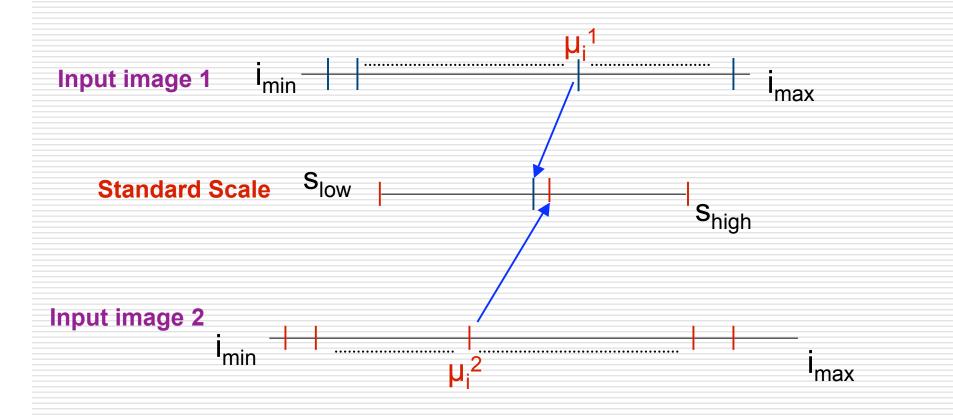
Nyul Approach in a nutshell

- ☐ Decile Formulation (Nyul et al. 2000)
- Two stage approach
- Training
 - Input a value range for forming a standard scale
 - Determine standard scale landmarks (mapping points) from the training data
- Transformation
 - Use standard scale for a piece-wise linear mapping of input image to standard scale

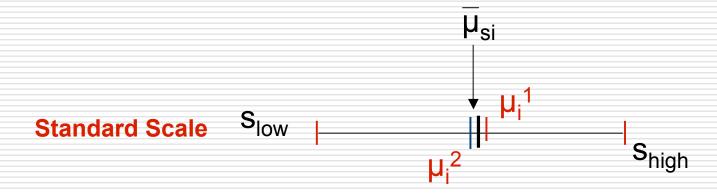
The Intensity Normalization (Training): Intensity of Interest (IOI)



The Intensity Normalization (Training): mapping to Standard scale



The Intensity Normalization (Training): mapping to Standard scale

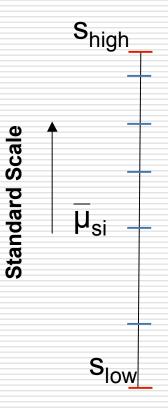


The Intensity Normalization (Training): Standard scale

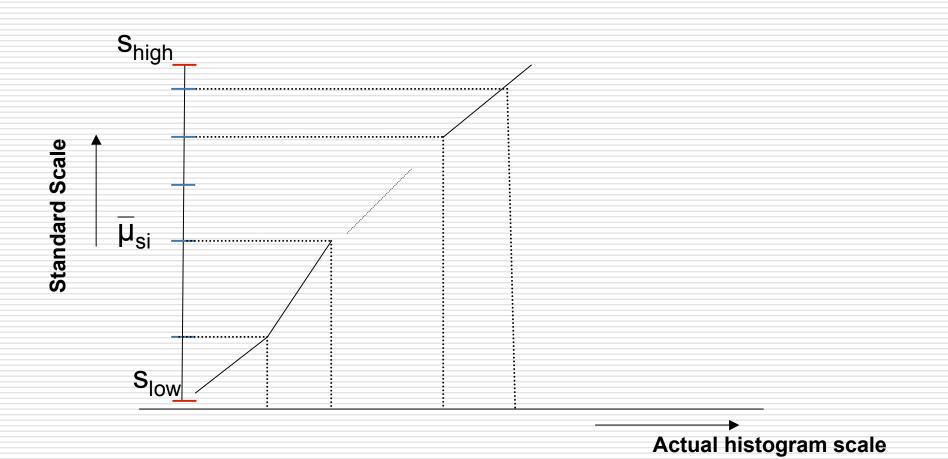
Standard Scale S_{low} μ_{s1} μ_{s3} μ_{s3} μ_{s2} μ_{s2}

The Intensity Normalization:

Standard Scale



The Intensity Normalization: Transformation



Evaluation of Nyul approach

Data Acquisition (data courtesy NeuroRx Research, Montreal)

- 21 multi-spectral (T1w, T2w and PDw) MRI scans
 - 7 subjects each from GE, Philips and Siemens
- Within each sub-group, patients with
 - Varying ventricle sizes
 - Varying MS lesion loads
- Protocols standardized to obtain similar contrasts
- Each MRI volume with
 - 1x1x3 mm resolution
 - 50 slices (vertex to the foramen magnum)

Pre-processing

- ☐ Image Modalities' Alignment
 - Image modalities aligned to a common stereotaxic space for deterministic spatial voxel mapping
- Intensity in-homogeneity correction
 - To account for scanner-specific variations

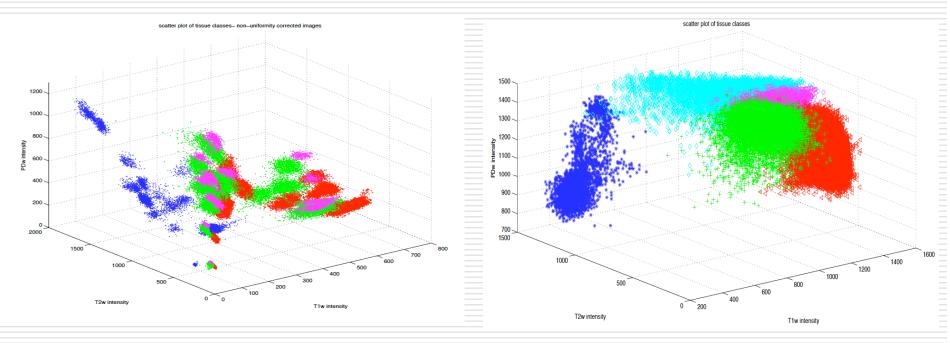
Tissue Sampling

- ☐ "Pure" tissue samples
- Tissue types
 - Cortical Gray Matter (CGM), Deep Gray Matter (DGM), White Matter (WM), and Cerebrospinal Fluid (CSF)
- 1000 manual samples for each tissue per MRI
 - about 20 slices (alternate) per brain volume
- ☐ Samples obtained both before and after normalization
- Lesions identified automatically followed by expert validations by 5 expert radiologists (consensus)

Evaluation

- Training
 - 100 volumes with varying lesion loads and MS pathology
 - Standard scale histogram parameters obtained
 - Same for all modalities
- Standard scale then used in the Transformation stage
- Evaluation Criteria
 - Effect of normalization on heterogenous MRIs
 - Multi-site, Multi-scanner (different manufacturers/brands)
 - Distributional assumption
 - Role of normalization in tissue separation
 - Effect of pathology

Qualitative Evaluation

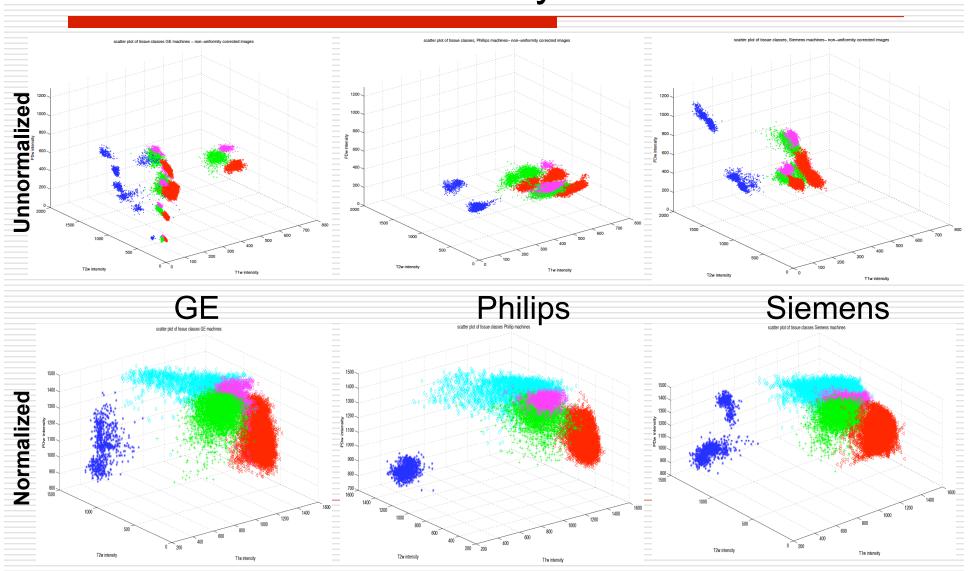


Un-normalized

Normalized

Red: WM, Green: CGM, Magenta: DGM, Blue: CSF, Cyan:Lesions

Qualitative Evaluation: by manufacturers



Quantitative Evaluation

- Tissue behavior in individual modalities
- Effect on Gaussian distribution assumption
- Jeffrey Divergence criterion

$$JD(p,q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx + \int_{-\infty}^{\infty} q(x) \log \frac{q(x)}{p(x)} dx$$

Verifying Gaussian assumptions

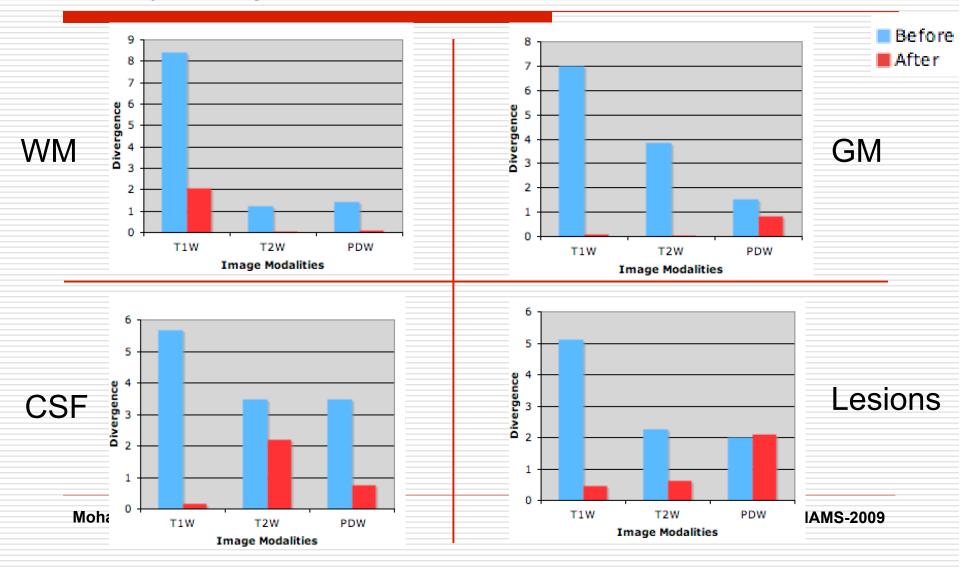
- □ For un-normalized images:
 - Calculate intensity histogram for each tissue type from the input image (bin size 100). Call it D1-u
 - Calculate data mean m and covariance c
 - Generate a Gaussian at (m, c). Call it **D2-u**
 - Calculate the Jeffrey Divergence between D1-u and D2-u:
 JD-u
- ☐ For normalized images
 - Do as above and calculate JD-n
- ☐ Compare JD-u and JD-n

Hypothesis for Evaluation

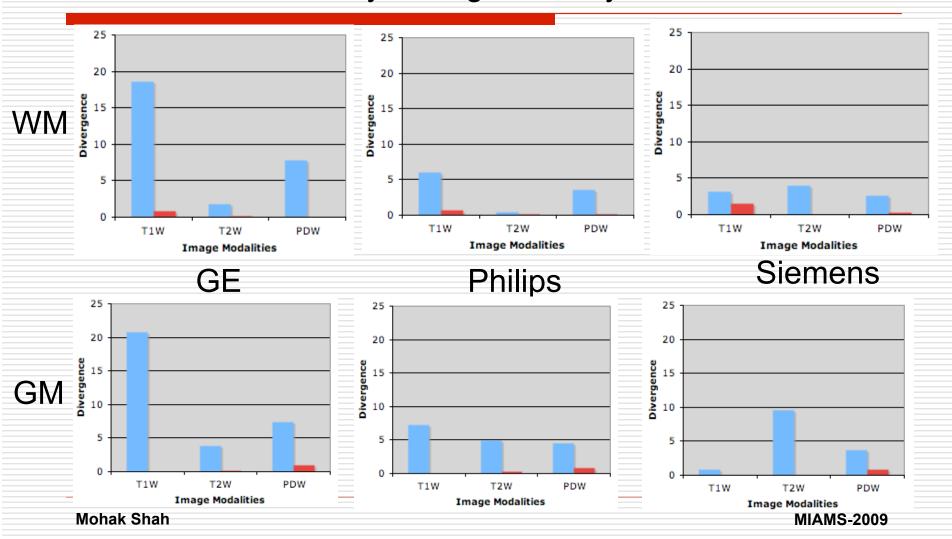
If the data comes from a Gaussian distribution then JD-u shouldn't be large

 Further if normalization doesn't have any effect on data distribution then the difference in JD-u and JD-n should be insignificant

Results Jeffrey Divergences: All machines

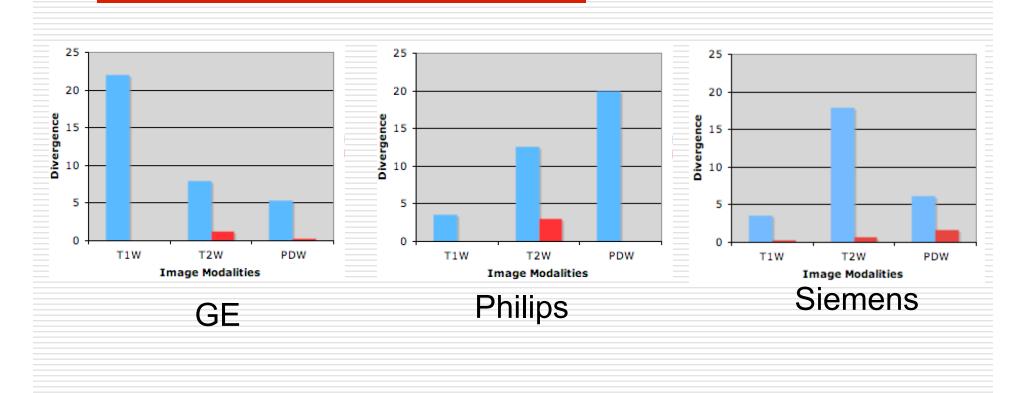


Results WM and GM: Jeffrey Divergences, by Manufacturers



Results

CSF: Jeffrey Divergences, by Manufacturers



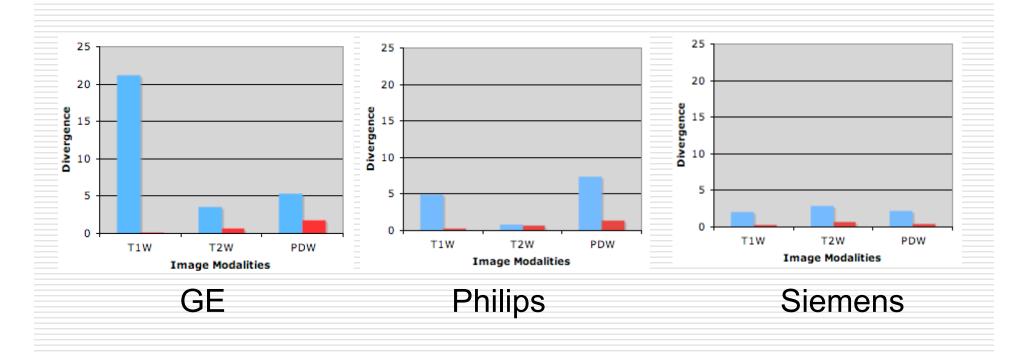
Mohak Shah MIAMS-2009

Before

After

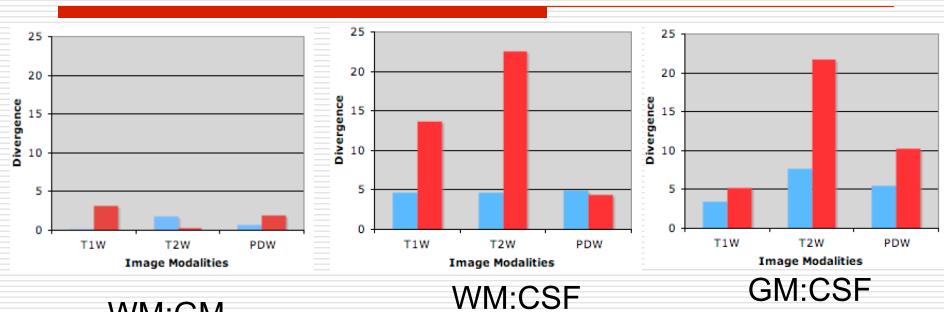
Results

Lesions: Jeffrey Divergences, by Manufacturers



■ Before ■ After

Tissue Contrast



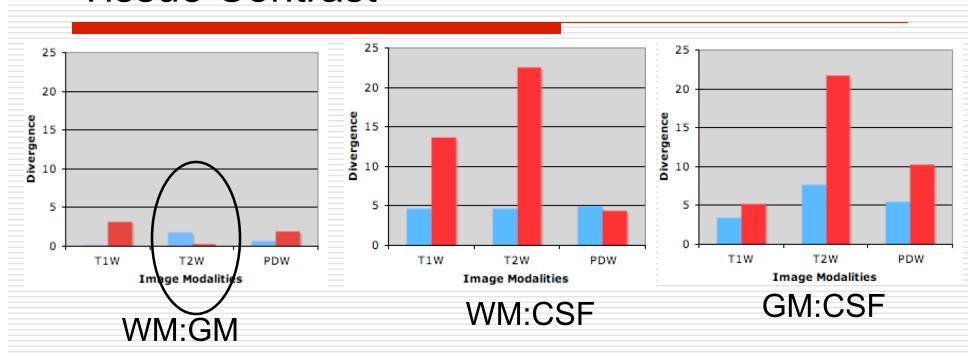
WM:GM

Before After

Mohak Shah

MIAMS-2009

Tissue Contrast



Conclusion and Future Work

- Nyul approach affects the tissue intensity distribution
 - Homogenizing same tissues
 - Better separation between different tissues
- Makes the distribution amenable to application of segmentation algorithms
- Robust in the presence of pathology
- □ To Do:
 - Effect on segmentation results
 - Lesion load dependent analysis
 - Incorporating this knowledge into automatic approaches

Thank You