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Abstract

We present an empirical study of the gener-
alization error bounds on the empirical risk
of classifier on a test set. We show how this
approach, by modeling the empirical risk as a
binomial, can be used to obtain realistic con-
fidence intervals that lie strictly in the [0, 1]
interval. This is in contrast to the traditional
confidence interval approach that impose an
asymptotic Gaussian assumption on the em-
pirical risk which rarely holds for low risk-
values resulting in unrealistic estimates on
the limits of the intervals.

1. Introduction

One of the most common techniques of evaluating the
performance of a machine learning algorithm is its em-
pirical evaluation on a separate set of test examples
(not used for training the algorithm). This is gener-
ally referred to as the hold-out testing. In this case,
either the full dataset is divided into a training and
a hold-out set or such a division is already provided
with the data description in case an empirical eval-
uation estimate is desired specifically on the chosen
hold-out set. In either case, a learning algorithm is
trained on the training set using an apt model selec-
tion strategy and the classifier output by the learn-
ing algorithm after the training is then tested on the
held-out dataset. Further one aims to provide a confi-
dence interval around the performance estimate of the
learned classifier on the test set. Naturally, to do so,
we assume that the test set is representative of the un-
derlying distribution of the test data. Providing such
confidence interval around the empirical risk estimate
of the chosen classifier on the test data is the issue that
we focus on here. The main aim of such evaluation is
to answer the following questions:
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• Given the observed accuracy of a learning algo-
rithm over a limited sample of data, what can we
say about the behavior of the learning algorithm
over future unseen examples?

• Given that one learning algorithm outperforms
another over some sample data, how probable is
it that this learning algorithm is more accurate,
in general?

The estimates on the future performance of the em-
pirical risk of the classifier, or more appropriately the
degree of deviation of the empirical risk from the true
risk is generally obtained using a confidence interval
in which we believe the true risk of the classifier to lie.

The most common method of obtaining such confi-
dence interval relies on the assumption that the em-
pirical risk of the classifier on the test data can be
modeled, in the limit, as a Gaussian. Based on this
assumption, the necessary statistics are obtained from
testing the classifier on the test data. That is, the
mean classification error and its corresponding vari-
ance on the test examples are obtained. A confidence
interval is then provided in terms of a Gaussian around
the mean empirical risk with its tails removed at twice
the standard deviation estimate on either sides. This
provides both a lower and an upper bound on the true
risk of the classifier (effectively a 95% confidence in-
terval).

However, there is a strong caveat in this approach.
The confidence interval strategy described above relies
very significantly on the Gaussian assumption. But
the basis of this Gaussian assumption generally comes
from the central limit theorem in the statistics theory.
This results implies that given a true estimate of the
data statistic, the sampling distribution of this statis-
tic approaches a Gaussian distribution as the number
of samplings reaches infinity. That is, the Gaussian
assumption holds on a fixed underlying statistic and

that too asymptotically. However, this might not, and



Hold-out Bounds for Classifier Evaluation

indeed is not, generally the case.

The risk in the case of classification is modeled as a
zero-one loss. This is equivalent then to having an in-
dicator function which is true when the classifier errs
on an example. This would lead to a binomial distri-
bution over a number of trials (tests of classifier on a
number of samples). Further, the aim of learning is to
obtain as low an empirical risk as possible. That is,
we are interested in modeling the empirical risk of the
classifier for lower values (values closer to zero). How-
ever, for smaller values of empirical risk a binomial
distribution cannot be approximated by a Gaussian.
This observation was also made by Langford [2005].
As a result, applying a Gaussian assumption results in
estimates that are overly pessimistic when obtaining
an upper bound and overly optimistic when obtain-
ing a lower bound around the empirical risk. Langford
[2005] also showed a comparison between the behavior
of the two distributions with an empirical example of
upper bounds on the risk of a decision tree classifier
on test datasets.

Shah [2008] gave a qualitative analysis of this ap-
proach and discussed some important extension possi-
bilities. In this paper, we further the empirical valida-
tion of the test set bound approach [Langford, 2005]
by looking at the behavior of both the upper and the
lower bounds on the true risk of the classifiers. This
is analogous to providing a confidence interval around
a binomial distribution. We compare this against the
traditional Gaussian confidence interval approach and
show on a range of classifiers and datasets, how the test
set bound approach yields more realistic estimates as
opposed to the Gaussian confidence intervals. For the
purpose, we compare six binary classifiers on a total of
16 datasets from the UCI machine learning repository.

The rest of the paper is organized as follows. In the
next section we give the hold-out bound on the true
risk of the classifier. Section 3 then gives the empiri-
cal results of applying the test set risk bound approach
and compares it against the Gaussian confidence inter-
val approach. We conclude in Section 4.

2. An Hold-out Risk bound

We consider binary classification problems where the
input space X consists of an arbitrary subset of R

n

and the output space Y = {−1, +1}. An example

z
def
= (x, y) is an input-output pair where x ∈ X and

y ∈ Y. We adopt the PAC setting where each example
z is drawn according to a fixed, but unknown, prob-
ability distribution D on X × Y. The true risk R(f)
of any classifier f is defined as the probability that it

misclassifies an example drawn according to D:

R(f)
def
= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

where I(a) = 1 if predicate a is true and 0 otherwise.
Given a classifier f , and a test set T = {z1, . . . , zm}
of m examples, the empirical risk RT (f) on T , of any
classifier f , is defined according to:

RT (f)
def
=

1

m

m
∑

i=1

I(f(xi) 6= yi)
def
= E(x,y)∼T I(f(x) 6= y)

Now, we model RT (f) as binomial. The distribution
is defined as the probability of λ errors on a set of m

examples with true risk of the classifier f being R(f).

PrT∼Dm(mRT (f) = λ|R(f)) =

(

m

λ

)

(R(f))λ(1−R(f))m−λ

We use the cumulative which is the probability of λ or
fewer errors on m examples.

Bin(m, λ, R(f)) = PrT∼Dm((mRT (f) ≤ k|R(f))

=
m

∑

i=0

(

m

λ

)

(R(f))i(1 − R(f))m−i

We define binomial inversion tail [Langford, 2005] as:

Bin(m, λ, δ) = max{p : Bin(m, λ, p) ≥ δ)}

which is the largest true error such that the probability
of observing λ or fewer errors is at least δ.

Then, the risk bound on the true risk of the classifier
is defined as [Langford, 2005]:

Theorem 1 For all classifiers f , for all D, for all

δ ∈ (0, 1]:

PrT∼Dm(R(f) ≤ Bin(m, λ, δ)) ≥ 1 − δ

From this result, it follows that Bin(m, λ, δ) is the
smallest upper bound which holds with probability at
least 1 − δ, on the true risk R(f) of any classifier f

with an observed empirical risk RT (f) on a set of m

examples.

In an analogous manner, a lower bound on R(f) can
be shown to be [Langford, 2005]:

Theorem 2 For all classifiers f , for all D, for all

δ ∈ (0, 1]:

PrT∼Dm(R(f) ≥ min
p

{p : 1−Bin(m, λ, p) ≥ δ}) ≥ 1−δ
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3. Empirical Results

In this section, we examine empirically how the es-
timates of the risk bounds around the empirical risk
fare compared to the traditionally utilized method of
obtaining confidence intervals around the empirical
risk based on the Gaussian assumption. We compare
six learning algorithms on 16 different datasets. The
learning algorithms compared are the Support Vector
Machine equiped with an radial basis function kernel,
the Set Covering Machine for learning conjunctions
of data-dependent balls [Marchand and Shawe-Taylor,
2002], Adaboost with decision stumps, Decision Trees
and the Naive Bayes algorithms. With the excep-
tion of the SCM for which an in-house implementation
was used, the other algortihms were the ones imple-
mented in the Weka machine learning toolkit [Witten
and Frank, 2005].

Each data set was divided into two parts, a training
set S and a test set T . The training set was used to
train the learning algorithm and perform model selec-
tion to obtain the best parameters from a pre-defined
set of parameter values. The learning parameters of all
algorithms were determined from the training set only.
To do the model selection a 10-fold Cross Validation
(CV) was used on the training set and the parameters
with the best average CV error were chosen for each of
the learning algorithms on each dataset. The parame-
ters included the C and the γ values in the case of the
SVM, the penalty parameter p and the best number
of features s for the SCM, the confidence parameter
for pruning C and the minimum leaf nodes in the case
of Decision trees, and the number of iterations in the
case of Adaboost. The algorithms were then trained
with the chosen parameter values on the training set.
The final classifier output by each algorithm was then
tested on the test set. The details of the datasets are
provided in Table 1. The columns |S| and |T | refers
to the number of examples in the training and the test
sets respectively. The column n refers to the number
of attributes in each dataset. The results of testing
each of the classifier on these datasets are presented in
Table 2. The column labeled RT denotes the empirical
risk of the classifier on the test set, the columns CIl

and CIu denote the lower and upper limits of the confi-
dence interval obtained using the asymptotic Gaussian
assumption on the sampling distribution of the empir-
ical risk. These limits are the two standard deviation
limits around the empirical risk. The variance of the
risk is obtained on the test set data samples with the
empirical risk assumed as the mean of the distribution.
Finally, the Bl and Bu columns denote, respectively,
the lower and upper intervals generated from comput-
ing the lower and upper risk bounds of Theorems 2

Data-Set |T| |S| n

Usvotes 200 235 16

bupa 175 170 6

Credit 300 353 15

Glass 107 107 9

Haberman 150 144 3

HeartS 147 150 13

sonar 103 105 60

SonarM 104 104 60

BreastCancer 343 340 9

Wdbc 284 285 30

Tic-tac-toe 479 479 9

Ionosphere 175 176 34

Letter AB 1055 500 16

Letter OQ 1036 500 16

Letter DO 1055 500 16

Mushroom 4062 4062 22

Table 1. Data Set Description

and 1 of Section 2 with δ = 0.025. This value of δ is
chosen to obtain the intervals comparable to the two
standard deviations intervals obtained with the Gaus-
sian assumption approach.

4. Discussion and Conclusion

As mentioned above, the risk bound technique can be
considered as an alternate approach to obtain confi-
dence intervals around the empirical risk of the clas-
sifiers. It is different from the traditional confidence
interval technique in the sense that the empirical risk
is modeled as a binomial distribution. In contrast, the
classical approach to obtain confidence intervals makes
an implicit use of the central limit theorem in impos-
ing an asymptotic Gaussian assumption on the distri-
bution of the empirical risk considering the true risk
to be fixed. However, for lower values of the empiri-
cal risk (closer to zero), this assumption rarely, if ever,
holds. As a result the limits of the confidence inter-
vals obtained using the classical technique are either
overly pessimistic (the upper limits) or overly opti-
mistic (the lower limits). Moreover, the limits of these
intervals are also not restricted to the [0, 1] intervals
rendering them meaningless in most scenarios. For in-
stance, upper limits of the confidence interval around
the empirical risk exceeding unity can hardly be inter-
preted. Indeed, the empirical risk of the classifier, by
definition, should always be constrained in the [0, 1],
and so should be its true risk. Hence, obtaining con-
fidence intervals that spill over this known interval do
not make much sense. On the other hand, the risk
bound approach is guaranteed to lie in the [0, 1] in-
terval. Moreover, as we also saw in the results of Ta-
ble 2, this technique allows us to obtain tight inter-
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Data-Set A RT Bl Bu CIl CIu

USvotes

SVM 0.05 0.027 0.096 -0.407 0.507
Ada 0.04 0.017 0.077 -0.352 0.432
DT 0.055 0.027 0.096 -0.402 0.512
DL 0.045 0.020 0.083 -0.370 0.460
NB 0.07 0.038 0.114 -0.441 0.581
SCM 0.105 0.066 0.156 -0.509 0.719

Bupa

SVM 0.352 0.235 0.376 -0.574 1.278
Ada 0.291 0.225 0.364 -0.620 1.202
DT 0.325 0.256 0.400 -0.614 1.264
DL 0.325 0.256 0.400 -0.614 1.264
NB 0.4 0.326 0.476 -0.582 1.382
SCM 0.377 0.305 0.453 -0.595 1.349

Credit

SVM 0.183 0.141 0.231 -0.592 0.958
Ada 0.17 0.129 0.217 -0.582 0.922
DT 0.13 0.094 0.173 -0.543 0.803
DL 0.193 0.150 0.242 -0.598 0.984
NB 0.2 0.156 0.249 -0.603 1.003
SCM 0.19 0.147 0.239 -0.596 0.976

Glass

SVM 0.168 0.102 0.252 -0.583 0.919
Ada 0 0 0.033 0.0 0.0
DT 0.186 0.118 0.273 -0.597 0.969
DL 0.065 0.026 0.130 -0.431 0.561
NB 0.299 0.214 0.395 -0.621 1.219
SCM 0.215 0.141 0.304 -0.610 1.040

Haberman

SVM 0.273 0.203 0.352 -0.621 1.167
Ada 0.233 0.185 0.330 -0.640 1.106
DT 0.273 0.203 0.352 -0.621 1.167
DL 0.273 0.203 0.352 -0.621 1.167
NB 0.246 0.180 0.323 -0.619 1.111
SCM 0.253 0.185 0.330 -0.619 1.125

HeartS

SVM 0.204 0.142 0.278 -0.604 1.012
Ada 0.272 0.202 0.351 -0.621 1.165
DT 0.197 0.136 0.270 -0.601 0.995
DL 0.156 0.101 0.225 -0.574 0.886
NB 0.136 0.085 0.202 -0.552 0.824
SCM 0.190 0.130 0.263 -0.598 0.978

Sonar

SVM 0.116 0.061 0.194 -0.528 0.760
Ada 0.135 0.076 0.217 -0.553 0.823
DT 0.365 0.099 0.251 -0.581 0.911
DL 0.281 0.197 0.378 -0.622 1.184
NB 0.262 0.180 0.358 -0.621 1.145
SCM 0.310 0.223 0.409 -0.620 1.240

SonarM

SVM 0.182 0.113 0.270 -0.594 0.958
Ada 0.153 0.090 0.237 -0.615 0.921
DT 0.365 0.273 0.465 -0.602 1.332
DL 0.221 0.145 0.313 -0.613 1.055
NB 0.269 0.186 0.365 -0.622 1.160
SCM 0.403 0.308 0.504 -0.583 1.389

BreastCancer

SVM 0.038 0.020 0.063 -0.344 0.420
Ada 0.049 0.029 0.078 -0.385 0.483
DT 0.061 0.038 0.092 -0.419 0.541
DL 0.046 0.026 0.074 -0.376 0.468
NB 0.046 0.026 0.074 -0.376 0.468
SCM 0.037 0.020 0.063 -0.345 0.419

Wdbc

SVM 0.070 0.043 0.106 -0.442 0.582
Ada 0.042 0.022 0.072 -0.361 0.445
DT 0.052 0.029 0.085 -0.396 0.500
DL 0.059 0.035 0.094 -0.416 0.534
NB 0.049 0.027 0.081 -0.384 0.482
SCM 0.056 0.032 0.089 -0.406 0.518

Tic-Tac-Toe

SVM 0.062 0.042 0.088 -0.423 0.547
Ada 0.016 0.007 0.326 -0.240 0.272
DT 0.135 0.106 0.169 -0.550 0.820
DL 0.048 0.030 0.071 -0.372 0.468
NB 0.340 0.297 0.384 -0.608 1.288
SCM 0.106 0.080 0.137 -0.511 0.723

Ionosphere

SVM 0.045 0.019 0.088 -0.373 0.463
Ada 0.091 0.053 0.144 -0.487 0.669
DT 0.091 0.053 0.144 -0.487 0.669
DL 0.142 0.094 0.203 -0.559 0.843
NB 0.16 0.109 0.222 -0.574 0.894
SCM 0.24 0.178 0.310 -0.617 1.097

Letter-AB

SVM 0.001 0 0.005 -0.060 0.062
Ada 3.8e-3 0.001 0.009 -0.119 0.126
DT 0.017 0.010 0.026 -0.242 0.276
DL 0.016 0.009 0.025 -0.235 0.267
NB 0.080 0.064 0.098 -0.464 0.624
SCM 0.029 0.020 0.041 -0.308 0.366

Letter-OQ

SVM 0.010 0.005 0.018 -0.195 0.215
Ada 0.043 0.031 0.057 -0.364 0.450
DT 0.077 0.061 0.095 -0.457 0.611
DL 0.055 0.041 0.070 -0.401 0.511
NB 0.157 0.135 0.180 -0.571 0.885
SCM 0.109 0.090 0.129 -0.514 0.732

Letter-DO

SVM 0.013 0.007 0.022 -0.215 0.241
Ada 0.024 0.016 0.035 -0.286 0.334
DT 0.061 0.047 0.077 -0.420 0.542
DL 0.054 0.042 0.070 -0.402 0.510
NB 0.080 0.064 0.098 -0.464 0.624
SCM 0.061 0.047 0.077 -0.420 0.542

Mushroom

SVM 0 0 0.0009 0.0 0.0
Ada 0 0 0.0009 0.0 0.0
DT 0 0 0.0009 0.0 0.0
DL 0 0 0.0009 0.0 0.0
NB 0.091 0.083 0.101 -0.486 0.668
SCM 0.025 0.020 0.304 -0.287 0.337

Table 2. Results of various classifiers on UCI Datasets

vals in practice. The upper bound never results in an
overly pessimistic estimate greater than 1 while the
lower bound never becomes too optimistic. Further,
the confidence interval technique can’t yield a confi-
dence interval in the case when the observed empirical
risk is zero. This can be seen directly since the result-
ing Gaussian in this case has both a zero mean and
a zero variance. Hence, in the case of zero empirical
risk, the confidence interval technique becomes overly
optimistic. The risk bound on the other hand, still
yields a finite upper bound (of course very small since
RT (f) = 0).

Hence, we show empirically how a risk bound based ap-
proach yields more realistic estimates on the limits of
the confidence intervals and make a case for its wider
use. Currently, this approach is confined to certain
learning theoretic venues and formats. However, the
approach is promising and robust. We believe, that
it should be the metric of choice for reporting results
based on the hold out test set. However, with regard
to obtaining such guarantees based on other data re-
sampling techniques, such robust results are yet not
available. As also discussed in [Shah, 2008], however,
there are some approaches, such as the sample com-
pression bounds [Marchand and Shawe-Taylor, 2002,
Shah, 2006], for obtaining the training set bounds that
can result in practical realizable bounds on the true
risk of the classifier. Such techniques would not only
enable a comparison of the behavior of the classifier
on the data but can also take into account other char-
acteristics of the learning algorithm such as the com-
plexity of the hypothesis class.
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