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Abstract

We discuss the possibilities and issues in us-
ing learning theoretic risk bounds for classi-
fier evaluation. We show how test set bounds
already compare favorably to existing compa-
rable measures and what possibilities can be
explored for the training set bounds. When
used properly, these bounds can yield more
meaningful evaluaton measures.

1. Introduction

Evaluation of Machine Learning algorithms is crucial
to both our ability to assess the effectiveness of the
proposed approach as well as our understanding of its
applicability to the domain of interest. With respect
to the classification scenario, the focus of our discus-
sion here, several approaches have been explored that
can help not only in assessing the chosen classifier
but also selecting the best classifier from the classifier
space. The former class of problem is widely known as
the problem of error estimation or classifier evaluation
while the later as model selection. Although the two
problems as well as various approaches in both these
cases are related and have a considerable overlap, there
are crucial differences between what these approaches
address in each scenario. The problem of model se-
lection is the one that helps decide what is the best
classifier in the space of classifiers that a particular
algorithm explores given the training data. This gen-
erally appear, in addition to a particular algorithm’s
learnng bias, as selecting the best set of parameters,
e.g., k in the case of a k-Nearest Neighbor classifier.
On the other hand, the problem of error estimation
pertains to the problem of assessing the performance of
the chosen classifier given some test data. Hence, the
error estimation approaches basically not only aim at
giving reliable performance estimates for a given clas-
sifier but also provides a platform to compare two com-
peting classifiers (resulting from two different learning
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algorithms) on a given domain of interest (assumed
distribution over a representative test set).

Most of the classifier evaluation approaches that have
appeared are empirical in nature (although have the-
oretical foundations in statistics). For instance, pa-
rameteric approaches such as ones based on t-test es-
sentially assumes a distribution over the classification
error when comparing two estimates and aims to dis-
cover if the differences are indeed statistically signif-
icant. Other approaches such as ROC curves aim
at gauging the classifier performance over a range of
parameter values (and hence can essentially function
as model selection criteria too) resulting in the AUC
estimate for evaluation. Furthermore, there are ap-
proaches that obtains confidence intervals around the
test error of a classifier and give more weights to the
non-overlapping intervals. Similarly there are resam-
pling based approaches that result in error bars around
the estimates and are effective in the case of limited
sample sizes.

All these approaches have so far helped and continue to
guide the process of assessing classifiers’ performances
in the domains of interest. However, there is one cru-
cial factor to take note of with regard to such ap-
proaches. Each of these approaches take into account
only the empirical performance of the classifier on a
given test set. These are independent of the nature of
the learning algorithms in question or the guarantees
on their future performance. It is indeed possible that
a learning algorithm performs really well on a given
test set but does not generalize well in future. The
only assumption made about the test set performance
is that it is representative of the future unseen ex-
amples (and hence overall distribution) of the domain.
This is not an unreasonable assumption. However, the
estimates sometime break. For instance, a confidence
interval based estimate around the empirical error es-
sentially yields an interval of zero size for a consistent
classifier (classifier with zero empirical error). How-
ever, just as a training set can be insufficiently repre-
sentative of the underlying distribution so can the test
set. In dealing with the (un)representativeness of the
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training set, approaches have evolved so that the algo-
rithms do not underfit or overfit the data. Any algo-
rithm that aims to be practical enough deals with the
issue in one form or the other. For instance, decision
trees are generally pruned (after building a complete
tree) while a higher value of k secures against over-
fitting in the case of k-nearest neighbor. Similarly,
underfitting is dealt with too. But notice the crucial
difference between the manner in which we address
this issue in the case of training data. The approaches
do take into account the very nature of the learning
algorithm.

Statistical learning theory has made attempts to char-
acterize the performance of the classifier as well as the
guarantees over its future performance. Such results
have generally appeared in the form of generalization
error bounds. These guarantees basically provide up-
per (and sometimes lower) bounds on the deviation of
the true error of the classifier from its empirical er-
ror and take into account the precise quantities that
a classifier learns from the data. In this position pa-
per, we wish to examine if two or more classifiers (and
hence learning algorithms) can be compared in this
theoretical premise of the generalization error bounds.
We discuss some of the main challanges that need to
be overcome, the issues that need to be addressed and
the opportunities that exist in doing so.

2. Learning Theoretic Bounds

Providing generalization error bounds on the classifier
involves characterizing an algorithm in a given theoret-
ical framework. Different frameworks exploit different
criteria for characterizing an algorithm. The Proba-
bly Approximately Correct (PAC) framework, proba-
bly the oldest such framework and most widely used,
provides approximate guarantees on the true error of
a classifier with a given confidence parameter δ as can
be seen in the sample bounds presented below. The
generalization error bounds or risk bounds appear in
two main variants: the test set (or holdout) bounds
and the training set bounds. The holdout bounds are
the guarantees on the true error of the classifier ob-
tained on a given test set and can be obtained with-
out reference to the learning algorithm in question.
The training set bounds on the other hand, inspired
by resampling requirement as a result of limited data
availability and model selection considerations, almost
always take into account (or rather exploits) the char-
acteristics of the learning algorithm. We will explore
how such theoretical frameworks can be put to use in
classifier evaluation.

We explore the utility of both types of bounds in clas-
sifier evaluation. As we will see, while the test set

bounds can readily be utilized for the purpose, there
are many challenges with regard to the training set
bounds. Before we proceed further, we list some of the
notations that we use from here onward. The empiri-
cal error or risk of a classifier means the error that the
classifier makes on a given training set (in the case of
training set bounds) or a test set (for test set bounds)
and is denoted by RS(f) for a classifier f and train-
ing/test set S of m examples. The true risk, denoted
by R(f) is f ’s true risk on future unseen examples over
the distribution D from which the samples are drawn
i.i.d.. The rest of the notation are explained in the
context.

3. Test Set Bound

We start by showing a sample test set bound:

Theorem 1 [1] For all δ ∈ (0, 1], ∀f :

Pr
S∼Dm

(
R(f) ≤ RS(f) +

√
ln 1

δ

2m

)
≤ 1 − δ

where R(f) and RS(f) are the true and empirical risk
of classifier f .

Note in the above bound that RS(f) represents the
empirical risk of the classifier on a test or holdout set.
The important point to note in the above bound is that
the quantifier ∀f appears outside the probability. That
is, the bound holds true for any classifier f and not f
in some fixed classifier space H uniformly. This shows
that the test set bounds generally are applicable to
any independent estimate of any classifier on a test or
holdout set. It appears that, with regard to traditional
statistics, this corresponds to providing a confidence
interval around RS(f). However, the test set bound
approach have some distinct advantage.

Applying confidence intervals around RS(f) implies
computing a mean and variance of the estimate and
then providing a confidence interval with, say, 2 stan-
dard deviations around the mean. This implicitly as-
sumes the distribution of the observed empirical error
to be Gaussian asymptotically (i.e., in the limit that
the number of examples goes to infinity). The test set
bound works, on the other hand, by considering the
error distribution to be binomial. The effect of the
approach is that the test set bound approach lead to
(upper and lower) estimates that lie in the [0, 1] inter-
val while this might not be the case in the confidence
interval approach. Further, the bound approach has a
more predictable behavior when a consistent classifier
is found. That is, a classifier with zero empirical risk.
In this case, unlike confidence interval approach, the
bound estimate is not zero for a finite test set. [1]
discusses this in more details.
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Hence, the test set bounds can be better evaluation
measures as opposed to the traditional confidence in-
terval estimates and can lead to more meaningful clas-
sifier comparisons. Let us now discuss the training set
bound scenario.

4. Training set bounds

The idea of training set bounds is more involved. Var-
ious theoretical frameworks can be utilized to charac-
terize the behavior of a learning algorithm and bound
the true risk of the classifier. Most of these are built
on the PAC framework mentioned above with a confi-
dence measure δ. The lower the δ, the more the con-
fidence in the estimate about the true risk (and by
consequence looser the bound) and vice versa. Such
models, generally, provide these guarantees over the
future classifier performance in terms of its empirical
performance and possibly some other quantities ob-
tained from training data, and some measure on the
complexity of the hypothesis class that the learning al-
gorithm explores. Such measures have appeared in the
form of VC-dimension, Rademacher Complexities and
so on. There are other learning frameworks that do not
include explicitly algorithm’s dependence on the hy-
pothesis class complexity in the risk bound and hence
have an advantage over conventional bounds that do.
This is because, the complexity measure grows with
the size (and complexity) of the hypothesis class and
many a times result in unrealistic bounds. See [4] for
a quick review of trainng set bounds. Successful at-
tempts in the direction of attaining practical, realiz-
able bounds, although few, have appeared specifically
for sample compression framework.

Briefly, sample compression framework relies on char-
acterizing a classifier in terms of two complementary
sources of information viz. a compression set Si, where
i denotes the vector of indices pointing to the exam-
ples in the compression set, and a message string σ.
Hence, compression set is a (preferably) small subset
of the training set and the message string is the ad-
ditional information that can be used to reconstruct
the classifier from the compression set. Consequently,
this requires the existence of such a Reconstruction
function that can reconstruct the classifier solely from
this information. The risk bound that we present be-
low as an example, basically, bounds the risk of the
classifier represented by (σ, Si), over all such recon-
struction functions. The bound presented below is due
to [2] who also utilized this bound to perform success-
ful model selection in the case of Set Covering Machine
algorithm [3].

Theorem 2 For any reconstruction function R that
maps arbitrary subsets of a training set and message

strings to classifiers, for any prior distribution PI of
vectors of indices (where I denotes all possible 2m real-
izations of i) , for any compression set-dependent dis-
tribution of messages PM(Si) (where M denotes the
set of messages that can be supplied with compression
set Si), and for any δ ∈ (0, 1], the following holds with
probability 1 − δ over random draws of S ∼ Dm:

∀i ∈ I, ∀σ ∈ M(Si) : R(R(σ, Si)) ≤

1 − exp

(
−1

m − d − k

[
ln

(
m − d

k

)

+ ln
(

1
PI(i)PM(Si)(σ)δ

)])
(1)

where for any training set S, d is the sample com-
pression set size of classifier represented by (σ, Si),
R(σ, Si) and k is the number of training errors that
this classifier makes on the examples that are not in
the compression set.

As can be seen, the above bound will be tight when
the algorithm can find a classifier with small compres-
sion set d (a property known as sparsity) along with
a small empirical risk (k). Also, note that the quanti-
fier over the classifiers, ∀i ∈ I, ∀σ ∈ M appears inside
the probability. This is because the above bounds ap-
plies to all the classifiers in a given classifier space uni-
formly, unlike the test set bound. Hence, the training
set bound focuses precisely on what the learning algo-
rithm can learn (in terms of its reconstruction) and its
empirical performance on the training data. As also,
discussed before, training set bounds such as the one
shown above, also provide an optimization problem
for learning and theoretically a classifier that mini-
mizes the risk bound shoud be selected. However, this
statement should be considered more carefully. As also
discussed by [1], choosing a classifier based on the risk
bound necesarily means that this gives a better worst-
case bound on the true risk of the classifier. This
is different from obtaining an improved estimate of
true risk. Generally, measures such as empirical risk
that guide the model selection have a better behav-
ior. Some successful examples of learning from bound
minimization do exist however. See for instance [2].
Further, there can also be other considerations as we
discuss below.

5. Bounds for classifier evaluation?

With the progress on the learning theory front in pro-
viding tighter risk bounds for classifiers, there lies a
potential in utilizing these bounds for classifier evalu-
ation too. An interesting direction that demands at-
tention (or will do in near future) appears to be the
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ability to utilize the risk bounds for classifier eval-
uation. Performing successful model selection with
bounds appears an encouraging advancement. The
test set bounds appear to be a more direct method
for such classifier comparisons and can result in more
meaningful confidence estimates around the observed
empirical behavior of the classifier. The training set
bounds’ utilization for the purpose, however, warrants
a deeper understanding as well as addressing various
issues before successful application. A standardized
optimal framework can result in specification of learn-
ing algorithms and enable inter-algorithm comparison
on a common platform. Although, it remains to be
seen how can this be done meaningfully. Many a issues
remain to be addressed. For instance, if algorithms
A (e.g. SCM) is characterized in certain framework,
then is this framework optimal too for characterizing
algorithm B (e.g., SVM) with which we wish A to be
compared? This is, when at all, such characterization
is possible.

A concrete example can be seen in the case of sample
compression framework described above. A necessity
is to have a reconstruction function that can recon-
struct the classifier from compression sets and messge
strings. Many a algorithms confirm to such recon-
struction function existence while there are algorithms
for which a direct reconstruction scheme does not ex-
ist. For instance, algorithms such as the Set Covering
Machine [3] (SCM) has been designed with sparsity
considerations and can be successfully characterized in
this framework. Similarly, algorithms such as the Sup-
port Vector Machines can also be represented in this
framework. So can the algorithms such as Decision
Trees [5]. However, Algorithms such as SVM, although
characterizable in sample compression framework, are
not designed originally with sparsity as the learning
bias. Hence, such a comparison will always yield bi-
ased estimates. On the other hand, sample compres-
sion algorithms work on hypothesis class that is de-
fined after having the training set at hand (since each
classifier is defined in terms of a subset of the training
set), a notion widely known as data-dependent set-
tings. A complexity measure such as VC-dimension,
defined without reference to the data and applicable
in the case of SVMs, cannot characterize the complex-
ity of hypothesis class that sample compression algo-
rithms explore.
5.1. Advantages and Limitations

One of the main advantage of these (risk bound) ap-
proaches is that this brings us to more evolved and
meaningful performance evaluation measures for clas-
sifiers. That is, in addition to conventional quantities
such as error-rates, what other qualities of algorithms

can be considered in its evaluation. When consider-
ing the training set bounds, this is quite important
since different algorithms exploit different learning bi-
ases and a better estimation about its generalization
performance would naturally depend on how well do
the algorithms exploit the concerned bias. Moreover,
this opens up doors to a wide variety of research direc-
tions. For instance, we can compare algorithms that
optimize similar biases on such criterion. Hence, for a
given framework, one can have an idea of what kind of
algorithms should be preferred. For instance, sample
compression framework has algorithms that optimize
a trade-off between the compression set size and the
empirical risk. Hence, the classifier with increasing
complexity (in terms of compression set) are preferred
only when they lead to significantly better empirical
performance. The question now, while comparing two
learning algorithms, is how well each algorithm can
perform this trade-off and what would be the reper-
cussions of these selections in future. Other consid-
erations also come in play here such as the result-
ing nature of the optimization problem when using
such frameworks. Also, it is currently an active re-
search question about obtaining tight enough training
set bounds. Examples such as shown above are few.
It would be interesting to see advances on this front in
the near future and their impact on the classifier evalu-
ation field. The test set bounds on the other hand pro-
vide a readily favorable alternative to the confidence
interval based approaches in terms of more meaningful
characterization of classifier’s empirical performance.
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