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Abstract

We derive risk bounds for the randomized classifiers in Sar@pimpression set-
ting where the classifier-specification utilizes two sosreginformation viz. the

compression set and the message string. By extending taetheproposed Oc-
cam’s Hammer principle to the data-dependent settings ariealpoint-wise ver-

sions of the bounds on the stochastic sample compressesifiel@ssand also re-
cover the corresponding classical PAC-Bayes bound. Wadughow how these
compare favorably to the existing results.

1 Introduction

The Sample compression framework [Littlestone and Warl@B86, Floyd and Warmuth, 1995]
has resulted in an important class of learning algorithnswmas sample compression algorithms.
These algorithms have been shown to be competitive with tite-sf-the-art algorithms such as
the SVM in practice [Marchand and Shawe-Taylor, 2002, Lisfie et al., 2005]. Moreover, the
approach has also resulted in practical realizable boumdibas shown significant promise in using
these bounds in model selection.

On another learning theoretic front, the PAC-Bayes apgrgitcAllester, 1999] has shown that

stochastic classifier selection can prove to be more polbdn outputing a deterministic classifier.

With regard to the sample compression settings, this wakdurconfirmed in the case of sample
compressed Gibbs classifier by Laviolette and MarchandqROBowever, the specific classifier

output by the algorithm (according to a selected posteisogenerally of immediate interest since
this is the classifier whose future performance is of relegdn practice. Diluting such guarantees
in terms of the expectancy of the risk over the posterior dherclassifier space, although gives
tighter risk bounds, result in averaged statements ovemthected true error.

A significant result in obtaining such guarantees for thedigerandomized classifier has appeared
in the form of Occam’s Hammer [Blanchard and Fleuret, 20@Aeals with bounding the perfor-
mance of algorithms that result in a set output when givenitrg data. With respect to classifiers,
this results in a bound on the true risk of the randomizedsifias output by the algorithm in accor-
dance with a learned posterior over the classifier space fraiming data. Blanchard and Fleuret
[2007] also present a PAC-Bayes bound for the data-indepersettings (when the classifier space
is defined independently of the training data).

Motivated by this result, we derive risk bounds for the ramidted sample compressed classifiers.
Note that the classifier space in the case of sample compressitings, unlike other settings, is
data-dependent in the sense that it is defined upon the adicifi of training datd. The rest of

INote that the classifier space depends on the amount of tiingalata as we see further and not on
the training data themselves. Hence, a data-independentoper the classifier space can still be obtained in
this setting, e.g., in the PAC-Bayes case, owing to the iaddpnce of the classifier space definition from the
content of the training data.



the paper is organized as follows: Section 2 provides a backgl on the sample compressed
classifiers and establishes the context; Section 3 theessthe Occam’s Hammer for the data-
independent settings. We then derive bounds for the rarmmhdample compressed classifier in
Section 4 followed by showing how we can recover bounds fersdmmple compressed Gibbs case
(classical PAC-Bayes for sample compressed classifie&gdtion 5. We conclude in Section 6.

2 Sample Compressed (SC) Classifiers

We consider binary classification problems where the inpateX’ consists of an arbitrary subset

of R™ and the output spag@ = {—1,+1}. An examplez def (x,y) is an input-output pair where

x € X andy € ). Sample Compression learning algorithms are characteaigéollows:

Given a training seb = {zi,...,z,} of m examples, the classifiet(S) returned by algorithm
A is described entirely by twoomplementary sources of informatiosm subset; of S, called the
compression setand amessage strings which represents the additional information needed to

obtain a classifier from the compression get Given a training sef, the compression set is

defined by a vectar of indicesi def (i1,d2,...,4)5) Withi; € {1,...,m} Vjandi; <iy <...<

i); and wherei| denotes the number of indices preserit ilencez; denotes théth example ofS
wherea; denotes the subset of examplesSahat are pointed to by the vector of indidedefined
above. We will usd to denote the set of indices not present.ifdence, we havé = z; U z; for
any vectori € Z whereZ denotes the set of th¥" possible realizations df

Finally, a learning algorithm is a sample compression liegralgorithm (that is identified solely
by a compression sef; and a message string) iff there exists aReconstruction Functiof :

(X x V)il x K — M, associated withd. Here,H is the (data-dependent) classifier space and
K CZx Mst. M =UezM(i). Thatis,R outputs a classifieR (o, z;) when given an arbitrary
compression set; C .S and message string chosen from the set1(z;) of all distinct messages
that can be supplied tR with the compression set.

We seek a tight risk bound for arbitrary reconstruction fiorts that holds uniformly for all com-
pression sets and message strings. For this, we adopt thed®i) where each exampdés drawn
according to a fixed, but unknown, probability distributiBron X x ). The true riskR(f) of any
classifierf is defined as the probability that it misclassifies an examen according t®:

def
R(f) = Pr(x,y)ND (f(X) # 1/) = E(x,y)NDI(f(X) 7£ 1/)
wherel(a) = 1 if predicateq is true and) otherwise. Given a training sét= {zi,...,z,,} of m
examples, thempirical risk Rs(f) on .S, of any classifierf, is defined according to:

R(f) ™ L5 1(705) # ) 2 B s 1(700) £ 9)
=1

Let Z™ denote the collection of» random variables whose instantiation gives a training $amp
S = z™ = {z1,...,z,}. To obtain the tightest possible risk bound, we will fullypéoit the
fact that the distribution of classification errors is a limal. We now discuss the generic Occam'’s
Hammer principle (w.r.t. the classification scenario) amehtgo on to show how it can be applied
to the sample compression setting.

3 Occam’s Hammer for data independent setting

In this section, we briefly detail the Occam’s hammer [Blarchand Fleuret, 2007] for data-
independent setting. For the sake of simplicity, we retaénkey notations of Blanchard and Fleuret
[2007]. Occam’s hammer work by bounding the probability atilevent defined as follows. For
every classifieh, € H, and a confidence parameter [0, 1], the bad evenB(h, ¢) is defined as
the region where the desired property on the clasgifidoes not hold, with probability. That is,
Prg.pm [S € B(h,0)] < ¢. Further, it assumes that this region is nondecreasing Intuitively,
this means that with decreasinghe bound on the true error of the classifiebecomes tighter.

With the above assumption satisfied, [Ptbe a non-negative reference measure on the classifier
spaceH known as the volumic measure. Létbe a probability distribution ofi{ absolutely contin-
uous w.r.t.P such thatr = %. LetT be a probability distribution o0, +o00) (the inverse density
prior). Then Occam’s Hammer [Blanchard and Fleuret, 20@gs that:



Theorem 1 [Blanchard and Fleuret, 2007] Given the above assumptiod BRIl I" defined as
above, define the level function

A(h,u) = min(d7(h)B(u), 1).
whereg(z) = fo”” udl'(u) for z € (0,400). Then for any algorithn$ +— 65 returning a probability
densityds overH with respect tdP, and such thafS, k) — 0g(h) is jointly measurable in its two
variables, it holds that

—1 <
onbl g 15 € Bl A, Os()™))] <6,

whereQ is the distribution orf{ such that% =0g.

Note above thaf) is the (data-dependent) posterior distributiorfoafter observing the data sample
S while P is the data-independent prior 6. The subscripts in 65 denotes this. Moreover, the
distributionII on the space of classifiers may or may not be data-dependemte Avill see later, in
the case of sample compression learning settings we wislidenpriors over the space of classifiers
without reference to the data (such as PAC-Bayes case).idenl, we can either opt for a pribr
independent of the data or make it the same as the volume ned&sthich establishes a distribution
on the classifier space without reference to the data.

4 Bounds for Randomized SC Classifiers

We work in the sample compression settings and as mentiagfedd) each classifier in this setting
is denoted in terms of a compression set and a message stingconstruction function then
uses these two information sources to reconstruct theifidais3 his essentially means that we deal
with a data-dependent hypothesis space. This is in comtiitisbther notions of hypothesis class
complexity measures such as VC dimension. The hypothestesp defined, in our case, based on
the size of data sample (and not the actual contents of thpleaniHence, we consider the priors
built on the size of the possible compression sets and adsdehessage strings. More precisely, we
consider prior distributio® with probability densityP(z;, o) to be facotorizable in its compression
set dependent component and message string componeniti@oed on a given compression set)
such that:

P(zi,0) = Pr(i) Pz (0) 1)
with Pz(i) = (Tl)p(|i|) such thaty_" ;p(d) = 1. The above choice of the form fdP;(i) is

i

appropriate since we do not have ampriori information to distinguish one compression set from
other. However, as we will see later, we should chqggé such that we give more weight to smaller
compression sets.

Let P be the set of all distribution® on K satisfying above equation. Then, we are interested
in algorithms that output a posterigf € Py over the space of classifiers with probability den-
sity Q(zi, o) factorizable ag)7(i)Q () (). A sample compressed classifier is then defined by
choosing a classifide;, o) according to the posteridp(z;, o). This is basically the Gibbs classifier
defined in the PAC-Bayes settings where the idea is to bountttie risk of this Gibbs classifier
defined aR(Gq) = E(,, o)~ R((zi,0)). Onthe other hand, we are interested in bounding the true
risk of the specific classifiglz;, o) output according t@). As shown in [Laviolette and Marchand,
2007], a rescaled posteri@rof the following form can provide tighter guarantees whilaimaining

the Occam'’s principle of parsimony.

Definition 2 Given a distributionQ € Py, we denote by) the distribution:

@(zh 0) def Q(Zi7 0) . QI(i)QM(Zi)(U) _ @(i)QM(zi)(U) V(Zi, 0) cK

(Bao~ery  [Bao~af

Hence, note that the posterior is effectively rescaled ther tcompression set part. Hence, any
classifier(z;,0) ~ Q@ = i ~ Qz,0 ~ Q). Further, if we denote byl; the expected
value of the compression set size over the choice of parasnateording to the scaled posterior,

ds ' E, |i|, then,

Q 1N@70NQM(Zi)

1 1 1
EZ'O'N —_ = -
(17)Q|i| E

i m-dg

iN@7aNQM(Zi)



Now, we proceed to derive the bounds for the randomized saoghpressed classifiers starting
with a PAC-Bayes bound.

4.1 A PAC-Bayes Bound for randomized SC classifier

We exploit the fact that the distribution of the errors isdyimal and define the following error
guantities (for a givet, and hence; overzm):

Definition 3 Let S € D™ with D a distribution onX’ x ), and (z;,0) € K. We denote by
Bing(i, o), the probability that the classifiéR (z;, o) of (true) risk R(zb;, o) makeqﬂRzi(zi, o) or
fewer errors onz/ ~ DIl That s,

[ Ry (51,0)

Bins.o) = > () (om0 - Rl

A=0

and byBs(i, o), the probability that this classifier makes exadily?,_(zi, o) errors onz; ~ DIl
That s,
H

Bl0.0) = ([ oy ) (070 = R ) e

Now, approximating the binomial by relative entropy Chédfirmund [Langford, 2005], we have,
for a classifierf:

mRs(f)

S ()R- R < explom MRS (DIR))

j=0
forall Rs(f) < R(f).
As also shown in [Laviolette and Marchand, 2007], sitt€g = (" ;) andkl(Rs(f)||R(f)) =

j
kl(1 — Rs(f)|I1 — R(f)), the above inequality holds true for each factor inside v sn the
left hand side. Consequently, in the case of sample congutedassifiery(z;, o) € K andVvs €
(X xy)™ .
BS(ia 0) < exp [_|i| ! kl(RZ;(Uv Zi)”R(Ua Zi))} (2)

Bounding this by yields:
1n%
Prg.pm kl(RzT(U, Zi)HR(U, Zi)) < ﬁ >1-96 3)
1

Now, consider the quantity in the probability in Equations3tlae bad event over classifiers defined
by a compression séand an associated message stenget,~ (i, o) be the posterior probability
density of the rescaled data-dependent posterior disinib@ over the classifier spaseth respect

to the volume measurP. We can now replaceé for this bad event by the delta of the Occam’s
hammer defined as:

min(On(hs) 30 (o7 = 1“*(5~w1<h>'mm<<k+1>11: (o) T 1))

- <%(h)-max((k+l)wzm(i,0) : ,1)>

In, <%(h) - (k + 1) max(vym (i,0) * 1)>
In (5%@) (k+ 1)) +1ny (wzm (i,a)kk“)

whereln; denotesnax(0, In), the positive part of the logarithm.

IN



However, note that we are interested in data-independ@rsmver the space of classifiérsand
hence, we consider our pridf to be the same as the volume measBrever the classifier space
yielding = as unity. That is, our prior gives a distribution over thessifier space without any
regard to the data. Substituting fog (i, o) (the fraction of respective densities; Radon-Nikodym
derivative¥, we obtain the following result:

Theorem 4 For any reconstruction functio® : D™ x K — H and for any prior distribution

P over compression set and message strings, the sample cssigoralgorithmsA(S) returns a
posterior distribution®, then, for§ € (0,1] andk > 0, we have:

Pr [kl(Rzi(zi, 0)||R(zi,0))

S~D™IinQT,0~Q M(24)
1 k+1 1 @(zh o)
_[hl( 3 )+(1+E)1n+<P o) 21-96

m — |l| (Zh

whereRzT(zi, o) is the empirical risk of the classifier reconstructed frém, o) on the training
examples not in the compression set &1d;, o) is the corresponding true risk.

Note that we do not encounter the— factor in the bound instead Gf— unlike the bound

of Laviolette and Marchand [2007]. ThIS is because the PA@eB bound of Lawolette and Marc-
hand [2007] computes thexpectancyver the kl-divergence of the empirical and true risk of the
classifiers chosen according@b This, as a result of rescaling &f in preference of smaller com-
pression sets, is reflected in the bound. On the other haadhatind of Theorem 4 is a point-wise
version bounding the true error tife specific classifier chosagecording taQ and hence concerns
the specific compression set utilized by this classifier.

4.2 A Binomial Tail Inversion Bound for randomized SC classiier

A tighter condition can be imposed on the true risk of thegifas by considering the binomial tail
inversion over the distribution of errors. Tiénomial tail inversionBin (%, 5) is defined as the
largest risk value that a classifier can have while still hg\a probability of at least of observing
at mostk errors out ofm examples:

Bin (E,(S) def sup {T : Bin <£,T> > 5}
m m

where

From this definition, it follows thaBin (Rs(f), d) is thesmallestupper bound, which holds with
probability at least — J, on the true risk of any classifigrwith an observed empirical risRs( f)
on a test set ofn examples (test set bound):

sz{R(f)S%(Rzm(f),(S)}21—5 vf 4)

This bound can be converted to a training set bound in a stdmdanner by considering a measure
over the classifier space (see for instance [Langford, ZD8&orem 4.1]). Moreover, in the sample
compression case, we are interested in the empirical rikeoflassifier on the examples not in the
compression set (consistent compression set assumphiom). let,. be aj-weighed measure on

the classifier space, i.é.ando. Then, for the compression sets and associated messaggsstri

Hence, the missing in the subscript ofr(h) in the r.h.s. above.
3Alternatively, letP(z;,0) and Q(z;, o) denote the probability densities of the prior distributiBrand
rescaled posterior distribution@ over classifiers such thaQ = Q(zi, o)dp anddP = P(zi,0)du W.r.t.

some measurg. This too yields% fﬁg 7). Note that the final expression is independent of the unishgrly
measureu.




consider the following bad event with empirical risk of tHessifier measured dsins((zi, o)) for
i~ Q1,0 ~ Qumz): .

B(h,8) = {R(zi,0) > Bin(R,(2,0),6,)}
Now, we replacé,. with the level function of Occam’s hammer (with the same agstion of IT =
P,r=1):

k+1

min(07(hs)B(Yam (i,0)71),1) < 6 -min((k + 1) ehym (i,0)" 1)

< §- ! ZES
max((k + l)wznl (i, O')T7 1)
<5 S
(k + 1) max(¢gm (i,0) % , 1)
< 0

k+1

(k + 1>7/)Zm (ia 0) k
Hence, we have proved the following:

Theorem 5 For any reconstruction functio® : D™ x X — H and for any prior distributiornP
over the compression set and message strings, the sampjression algorithmsA(S) returns a
posterior distribution®, then, for§ € (0, 1] andk > 0, we have:

Pr [R(zi,cﬂ s%@zi(zi,a), o >] S1-5
S~D™ANQT,0~Q M(2y) (k + 1)(%5:?,0))T

l'rd)

We can obtain a looser bound by approximating the binomilahtgersion bound using [Laviolette
et al., 2005, Lemma 1]:

Corollary 6 Given all our previous definitions, the following holds wittobability 1 — ¢ over the
jointdraw of S ~ D™ andi ~ Q7,0 ~ Qay(z,):

B 0) =09 (s [ () * (%Z
woe ()

5 Recovering the PAC-Bayes bound for SC Gibbs Classifier

Let us now see how a bound can be obtained for the Gibbs setfilegfollow the general line of
argument of Blanchard and Fleuret [2007] to recover the B&ges bound for the Sample Com-
pressed Gibbs classifier. However, note that we do this fod#ta-dependent setting here and also
utilize the rescaled posterior over the space of sample oesspd classifiers.

The PAC-Bayes bound of Theorem 4 basically states that
Egwpm[ _ Pr [kL(Rz (21, 0)[| R(zi,0)) > (d)]] < &

i~Qz.0~ Qo)

where § a )
1 0 +1 1 I Zi, 0
o) = w5 s e (55
Consequently,
Eg.pm[ __ Pr [kl(Rz, (21, 0) || R(2i, 0)) > (67)]] < &y

iINQz,0~Q M(zp)

Now, bounding the argument of expectancy above using th&danequality, we get:

Pl P R o) (e 0)) > (6] > <5
SD™ LinQz,0~Q M (zy)



Now, discretizing the argument ovgy;, ;) = (627%,27%), we obtain
P | P (R (o o) | o 0)) > (6] > 21| < 6
S~Dm inQz,0~Q M(z)
Taking the union bound ovét, 7 > 1 now yields:
Pr [ ~ Pr [KI(R,-(zs,0)||R(zi,0)) > 0(027%] < 2i] >1-6 Vi>0
S~Dm iNQI-,UNQM(zi) '

Now, let us consider the argument of the above statementfired sampleS. Then, for alli > 0,
the following holds with probability — ¢:

1 kE+1
e Ryt o)|RGo) > [ (B < 20
INQ7.0~Qad(ay) ‘ m — [i| 6

e (B

and hence:
__Pr [@S(zi,a) > 2i 1n2] <27
iINQz,0~Q M (z)
where:
. k+1 1 Q(z;,0)
S(. — _ . . _ S N el

®°(z3,0) = (m |1|)k1(RzT(zl,U)||R(zl,0)) 1n( 5 ) (1+ k)1n+ (P(zi,a)

@S(zi,o):

We wish to bound, for the Gibbs classifiét,

~Q1,0~QM(z;)

E

T @) < [ P [0%(zi,0) > 2iln2d(2i1n2)
’ z; 2

i1n2>0 inQ1,0~Q M(zy)

IN

2mn2) L 57 o [0 (21,0) 2 2iI02] <3 (5)
i>0 ’
Now, we have:

Lemma 7 [Laviolette and Marchand, 2007] For any : K — R*, and for anyQ, Q' € Pk

related by
1
Q/(Zia O')f(Zi, 0) = E—lQ(zia 0-)7
(z1,0)~Q f(zi,0)
we have:
1

E(z,0)~0r (f(ziaU)kl(Rz;(ZiaU)llR(ZiaU))) g (2
(z1,0)~Q f(z;,a))

whereRs(Gg) and R(G) denote the empirical and true risk of the Gibbs classifiehwidsterior
Q respectively.

kl(Rs(Go)l|R(Gg))

Hence, withQ’ = Q and f(z;, o) = |i|, Lemma 7 yields:
1

E(,. o)~g([IKl(Ry (21, 0)|| R(z1,0))) > ——KkI(Rs(GQ)||R(Gq)) (6)
mfda
Further,
- Q0] _ _ Qm,0)
E“QL”QMuw[m* Plao)| — Te@mo~@ue | ™ \ Br) Prgga (o)

M -In Q(Z—i’a)
= E(z"”)NPKPz(i)PMui)(U)) 1 (Pz(i)PM@i)(”))}
— max zlnz
0<z<1
< KL(Q|P)+0.5 )



Equations 6 and 7 along with Equation 5 and substituting m — 1 yields the final result:

Theorem 8 For any reconstruction functioR : D™ x K — H and for any prior distributionP
over compression set and message stringsj for(0, 1], we have:

Py, (Y2 € P K(R(Go) | R(G)

1 1
< (1+
m—da m—

+1n(%)+3.5D >1-

1)KL(@||P) + ﬁ

Theorem 8 recovers almost exactly the PAC-Bayes bound éo6Stdmple Compressed Classifiers

of Laviolette and Marchand [2007]. The key differences areaaditional(m_dﬁl)(m_l) weighted

KL-divergence term]n(Z) instead of thdn(Z4) and the additional trailing terms bounded by
mfdi. Note that the bound of Theorem 8 is derived in a relativelyerairaightforward manner
with the Occam’s Hammer criterion.

6 Conclusion

It has been shown that stochastic classifier selection fenadgle to deterministic selection by the

PAC-Bayes principle resulting in tighter risk bounds oveeraged risk of classifiers according to

the learned posterior. Further, this observation resuligijht bounds in the case of stochastic
sample compressed classifiers [Laviolette and Marchar@7]20so showing that sparsity consid-

erations are of importance even in this scenario via. theated posterior. However, of immediate

relevance are the guarantees of the specific classifier bhypsuch algorithms according to the

learned posterior and hence a point-wise version of thistdasiindeed needed. We have derived
bounds for such randomized sample compressed classifiaddpging Occam’s Hammer principle

to the data-dependent sample compression settings. Thiesalted in bounds on the specific clas-
sifier output by a sample compression learning algorithnomting to the learned data-dependent
posterior and is more relevant in practice. Further, we stgaved how classical PAC-Bayes bound
for the sample compressed Gibbs classifier can be recovesethore direct manner and show that
this compares favorably to the existing result of Lavi@ethd Marchand [2007].
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