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Abstract

We derive risk bounds for the randomized classifiers in Sample Compression set-
ting where the classifier-specification utilizes two sources of information viz. the
compression set and the message string. By extending the recently proposed Oc-
cam’s Hammer principle to the data-dependent settings, we derive point-wise ver-
sions of the bounds on the stochastic sample compressed classifiers and also re-
cover the corresponding classical PAC-Bayes bound. We further show how these
compare favorably to the existing results.

1 Introduction
The Sample compression framework [Littlestone and Warmuth, 1986, Floyd and Warmuth, 1995]
has resulted in an important class of learning algorithms known as sample compression algorithms.
These algorithms have been shown to be competitive with the state-of-the-art algorithms such as
the SVM in practice [Marchand and Shawe-Taylor, 2002, Laviolette et al., 2005]. Moreover, the
approach has also resulted in practical realizable bounds and has shown significant promise in using
these bounds in model selection.

On another learning theoretic front, the PAC-Bayes approach [McAllester, 1999] has shown that
stochastic classifier selection can prove to be more powerful than outputing a deterministic classifier.
With regard to the sample compression settings, this was further confirmed in the case of sample
compressed Gibbs classifier by Laviolette and Marchand [2007]. However, the specific classifier
output by the algorithm (according to a selected posterior)is generally of immediate interest since
this is the classifier whose future performance is of relevance in practice. Diluting such guarantees
in terms of the expectancy of the risk over the posterior overthe classifier space, although gives
tighter risk bounds, result in averaged statements over theexpected true error.

A significant result in obtaining such guarantees for the specific randomized classifier has appeared
in the form of Occam’s Hammer [Blanchard and Fleuret, 2007].It deals with bounding the perfor-
mance of algorithms that result in a set output when given training data. With respect to classifiers,
this results in a bound on the true risk of the randomized classifier output by the algorithm in accor-
dance with a learned posterior over the classifier space fromtraining data. Blanchard and Fleuret
[2007] also present a PAC-Bayes bound for the data-independent settings (when the classifier space
is defined independently of the training data).

Motivated by this result, we derive risk bounds for the randomized sample compressed classifiers.
Note that the classifier space in the case of sample compression settings, unlike other settings, is
data-dependent in the sense that it is defined upon the specification of training data.1 The rest of

1Note that the classifier space depends on the amount of the training data as we see further and not on
the training data themselves. Hence, a data-independent prior over the classifier space can still be obtained in
this setting, e.g., in the PAC-Bayes case, owing to the independence of the classifier space definition from the
content of the training data.



the paper is organized as follows: Section 2 provides a background on the sample compressed
classifiers and establishes the context; Section 3 then states the Occam’s Hammer for the data-
independent settings. We then derive bounds for the randomized sample compressed classifier in
Section 4 followed by showing how we can recover bounds for the sample compressed Gibbs case
(classical PAC-Bayes for sample compressed classifiers) inSection 5. We conclude in Section 6.

2 Sample Compressed (SC) Classifiers
We consider binary classification problems where the input spaceX consists of an arbitrary subset

of R
n and the output spaceY = {−1,+1}. An examplez

def
= (x, y) is an input-output pair where

x ∈ X andy ∈ Y. Sample Compression learning algorithms are characterized as follows:

Given a training setS = {z1, . . . , zm} of m examples, the classifierA(S) returned by algorithm
A is described entirely by twocomplementary sources of information: a subsetzi of S, called the
compression set, and amessage stringσ which represents the additional information needed to
obtain a classifier from the compression setzi. Given a training setS, the compression setzi is

defined by a vectori of indicesi
def
= (i1, i2, . . . , i|i|) with ij ∈ {1, . . . ,m} ∀j andi1 < i2 < . . . <

i|i| and where|i| denotes the number of indices present ini. Hence,zi denotes theith example ofS
whereaszi denotes the subset of examples ofS that are pointed to by the vector of indicesi defined
above. We will usei to denote the set of indices not present ini. Hence, we haveS = zi ∪ zi for
any vectori ∈ I whereI denotes the set of the2m possible realizations ofi.

Finally, a learning algorithm is a sample compression learning algorithm (that is identified solely
by a compression setzi and a message stringσ) iff there exists aReconstruction FunctionR :
(X × Y)|i| × K −→ H, associated withA. Here,H is the (data-dependent) classifier space and
K ⊂ I ×M s.t.M = ∪i∈IM(i). That is,R outputs a classifierR(σ, zi) when given an arbitrary
compression setzi ⊆ S and message stringσ chosen from the setM(zi) of all distinct messages
that can be supplied toR with the compression setzi.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly for all com-
pression sets and message strings. For this, we adopt the PACsetting where each examplez is drawn
according to a fixed, but unknown, probability distributionD onX × Y. The true riskR(f) of any
classifierf is defined as the probability that it misclassifies an exampledrawn according toD:

R(f)
def
= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

whereI(a) = 1 if predicatea is true and0 otherwise. Given a training setS = {z1, . . . , zm} of m
examples, theempirical riskRS(f) onS, of any classifierf , is defined according to:

RS(f)
def
=

1

m

m
∑

i=1

I(f(xi) 6= yi)
def
= E(x,y)∼SI(f(x) 6= y)

Let Zm denote the collection ofm random variables whose instantiation gives a training sample
S = zm = {z1, . . . , zm}. To obtain the tightest possible risk bound, we will fully exploit the
fact that the distribution of classification errors is a binomial. We now discuss the generic Occam’s
Hammer principle (w.r.t. the classification scenario) and then go on to show how it can be applied
to the sample compression setting.

3 Occam’s Hammer for data independent setting
In this section, we briefly detail the Occam’s hammer [Blanchard and Fleuret, 2007] for data-
independent setting. For the sake of simplicity, we retain the key notations of Blanchard and Fleuret
[2007]. Occam’s hammer work by bounding the probability of bad event defined as follows. For
every classifierh ∈ H, and a confidence parameterδ ∈ [0, 1], the bad eventB(h, δ) is defined as
the region where the desired property on the classifierh does not hold, with probabilityδ. That is,
PrS∼Dm [S ∈ B(h, δ)] ≤ δ. Further, it assumes that this region is nondecreasing inδ. Intuitively,
this means that with decreasingδ the bound on the true error of the classifierh becomes tighter.

With the above assumption satisfied, let,P be a non-negative reference measure on the classifier
spaceH known as the volumic measure. LetΠ be a probability distribution onH absolutely contin-
uous w.r.t.P such thatπ = dΠ

dP
. Let Γ be a probability distribution on(0,+∞) (the inverse density

prior). Then Occam’s Hammer [Blanchard and Fleuret, 2007] states that:



Theorem 1 [Blanchard and Fleuret, 2007] Given the above assumption and P,Π,Γ defined as
above, define the level function

∆(h, u) = min(δπ(h)β(u), 1).

whereβ(x) =
∫ x

0 udΓ(u) for x ∈ (0,+∞). Then for any algorithmS 7→ θS returning a probability
densityθS overH with respect toP, and such that(S, h) 7→ θS(h) is jointly measurable in its two
variables, it holds that

Pr
S∼Dm,h∼Q

[

S ∈ B(h,∆(h, θS(h)−1))
]

≤ δ,

whereQ is the distribution onH such thatdQ
dP

= θS .

Note above thatQ is the (data-dependent) posterior distribution onH after observing the data sample
S while P is the data-independent prior onH. The subscriptS in θS denotes this. Moreover, the
distributionΠ on the space of classifiers may or may not be data-dependent. As we will see later, in
the case of sample compression learning settings we will consider priors over the space of classifiers
without reference to the data (such as PAC-Bayes case). To this end, we can either opt for a priorΠ
independent of the data or make it the same as the volume measureP which establishes a distribution
on the classifier space without reference to the data.

4 Bounds for Randomized SC Classifiers
We work in the sample compression settings and as mentioned before, each classifier in this setting
is denoted in terms of a compression set and a message string.A reconstruction function then
uses these two information sources to reconstruct the classifier. This essentially means that we deal
with a data-dependent hypothesis space. This is in contrastwith other notions of hypothesis class
complexity measures such as VC dimension. The hypothesis space is defined, in our case, based on
the size of data sample (and not the actual contents of the sample). Hence, we consider the priors
built on the size of the possible compression sets and associated message strings. More precisely, we
consider prior distributionP with probability densityP (zi, σ) to be facotorizable in its compression
set dependent component and message string component (conditioned on a given compression set)
such that:

P (zi, σ) = PI(i)PM(zi)(σ) (1)

with PI(i) = 1

(m

|i|)
p(|i|) such that

∑m

d=0 p(d) = 1. The above choice of the form forPI(i) is

appropriate since we do not have anya priori information to distinguish one compression set from
other. However, as we will see later, we should choosep(d) such that we give more weight to smaller
compression sets.

Let PK be the set of all distributionsP on K satisfying above equation. Then, we are interested
in algorithms that output a posteriorQ ∈ PK over the space of classifiers with probability den-
sity Q(zi, σ) factorizable asQI(i)QM(zi)(σ). A sample compressed classifier is then defined by
choosing a classifier(zi, σ) according to the posteriorQ(zi, σ). This is basically the Gibbs classifier
defined in the PAC-Bayes settings where the idea is to bound the true risk of this Gibbs classifier
defined asR(GQ) = E(zi,σ)∼QR((zi, σ)). On the other hand, we are interested in bounding the true
risk of the specific classifier(zi, σ) output according toQ. As shown in [Laviolette and Marchand,
2007], a rescaled posteriorQ of the following form can provide tighter guarantees while maintaining
the Occam’s principle of parsimony.

Definition 2 Given a distributionQ ∈ PK, we denote byQ the distribution:

Q(zi, σ)
def
=

Q(zi, σ)

|i|E(zi,σ)∼Q
1
|i|

=
QI(i)QM(zi)(σ)

|i|E(zi,σ)∼Q
1
|i|

= QI(i)QM(zi)(σ) ∀(zi, σ) ∈ K

Hence, note that the posterior is effectively rescaled for the compression set part. Hence, any
classifier(zi, σ) ∼ Q = i ∼ QI , σ ∼ QM(zi). Further, if we denote bydQ the expected
value of the compression set size over the choice of parameters according to the scaled posterior,

dQ

def
= Ei∼QI ,σ∼QM(z

i
)
|i|, then,

E(zi,σ)∼Q

1

|i|
=

1

Ei∼QI ,σ∼QM(z
i
)
|i|

=
1

m− dQ



Now, we proceed to derive the bounds for the randomized sample compressed classifiers starting
with a PAC-Bayes bound.

4.1 A PAC-Bayes Bound for randomized SC classifier

We exploit the fact that the distribution of the errors is binomial and define the following error
quantities (for a giveni, and hencezi overz|i|):

Definition 3 Let S ∈ Dm with D a distribution onX × Y, and (zi, σ) ∈ K. We denote by
BinS(i, σ), the probability that the classifierR(zi, σ) of (true) riskR(zbi, σ) makes|i|Rz

i
(zi, σ) or

fewer errors onz′
i
∼ D|i|. That is,

BinS(i, σ) =

|i|Rz
i
(zi,σ)

∑

λ=0

(

|i|

λ

)

(R(σ, zi))
λ(1 −R(σ, zi))

|i|−λ

and byBS(i, σ), the probability that this classifier makes exactly|i|Rz
i
(zi, σ) errors onz′

i
∼ D|i|.

That is,

BS(i, σ) =

(

|i|

|i|Rz
i
(zi, σ)

)

(R(zi, σ))
|i|Rz

i
(zi,σ)

(1 −R(zi, σ))
|i|−|i|Rz

i
(zi,σ)

Now, approximating the binomial by relative entropy Chernoff bound [Langford, 2005], we have,
for a classifierf :

mRS(f)
∑

j=0

(

m

j

)

(R(f))j(1 −R(f))m−j ≤ exp(−m · kl(RS(f)‖R(f)))

for all RS(f) ≤ R(f).

As also shown in [Laviolette and Marchand, 2007], since
(

m
j

)

=
(

m
m−j

)

andkl(RS(f)‖R(f)) =

kl(1 − RS(f)‖1 − R(f)), the above inequality holds true for each factor inside the sum on the
left hand side. Consequently, in the case of sample compressed classifier,∀(zi, σ) ∈ K and∀S ∈
(X × Y)m:

BS(i, σ) ≤ exp
[

−|i| · kl(Rz
i
(σ, zi)‖R(σ, zi))

]

(2)

Bounding this byδ yields:

PrS∼Dm

(

kl(Rz
i
(σ, zi)‖R(σ, zi)) ≤

ln 1
δ

|i|

)

≥ 1 − δ (3)

Now, consider the quantity in the probability in Equation 3 as the bad event over classifiers defined
by a compression seti and an associated message stringσ. Letψzm(i, σ) be the posterior probability
density of the rescaled data-dependent posterior distributionQ over the classifier spacewith respect
to the volume measureP. We can now replaceδ for this bad event by the delta of the Occam’s
hammer defined as:

ln(min(δπ(hS)β(ψzm (i, σ)−1), 1)−1) = ln+

(

1

δ·π(h)
·

1

min((k + 1)−1ψzm(i, σ)−
k+1

k , 1)

)

= ln+

(

1

δ·π(h)
· max((k + 1)ψzm(i, σ)

k+1
k , 1)

)

≤ ln+

(

1

δ·π(h)
· (k + 1)max(ψzm(i, σ)

k+1
k , 1)

)

≤ ln

(

1

δ·π(h)
· (k + 1)

)

+ ln+

(

ψzm(i, σ)
k+1

k

)

whereln+ denotesmax(0, ln), the positive part of the logarithm.



However, note that we are interested in data-independent priors over the space of classifiers2, and
hence, we consider our priorΠ to be the same as the volume measureP over the classifier space
yielding π as unity. That is, our prior gives a distribution over the classifier space without any
regard to the data. Substituting forψzm(i, σ) (the fraction of respective densities; Radon-Nikodym
derivative)3, we obtain the following result:

Theorem 4 For any reconstruction functionR : Dm × K −→ H and for any prior distribution
P over compression set and message strings, the sample compression algorithmsA(S) returns a
posterior distributionQ, then, forδ ∈ (0, 1] andk > 0, we have:

Pr
S∼Dm,i∼QI ,σ∼QM(z

i
)

[

kl(Rz
i
(zi, σ)‖R(zi, σ))

≤
1

m− |i|

[

ln
(k + 1

δ

)

+ (1 +
1

k
) ln+

(

Q(zi, σ)

P (zi, σ)

)]]

≥ 1 − δ

whereRz
i
(zi, σ) is the empirical risk of the classifier reconstructed from(zi, σ) on the training

examples not in the compression set andR(zi, σ) is the corresponding true risk.

Note that we do not encounter the1
m−dQ

factor in the bound instead of 1
m−|i| unlike the bound

of Laviolette and Marchand [2007]. This is because the PAC-Bayes bound of Laviolette and Marc-
hand [2007] computes theexpectancyover the kl-divergence of the empirical and true risk of the
classifiers chosen according toQ. This, as a result of rescaling ofQ in preference of smaller com-
pression sets, is reflected in the bound. On the other hand, the bound of Theorem 4 is a point-wise
version bounding the true error ofthe specific classifier chosenaccording toQ and hence concerns
the specific compression set utilized by this classifier.

4.2 A Binomial Tail Inversion Bound for randomized SC classifier

A tighter condition can be imposed on the true risk of the classifier by considering the binomial tail
inversion over the distribution of errors. Thebinomial tail inversionBin

(

k
m
, δ

)

is defined as the
largest risk value that a classifier can have while still having a probability of at leastδ of observing
at mostk errors out ofm examples:

Bin

(

k

m
, δ

)

def
= sup

{

r : Bin

(

k

m
, r

)

≥ δ

}

where

Bin

(

k

m
, r

)

def
=

k
∑

j=0

(

m

j

)

rj(1 − r)m−j

From this definition, it follows thatBin (RS(f), δ) is thesmallestupper bound, which holds with
probability at least1 − δ, on the true risk of any classifierf with an observed empirical riskRS(f)
on a test set ofm examples (test set bound):

PZm

{

R(f) ≤ Bin
(

RZm(f), δ
)

}

≥ 1 − δ ∀f (4)

This bound can be converted to a training set bound in a standard manner by considering a measure
over the classifier space (see for instance [Langford, 2005,Theorem 4.1]). Moreover, in the sample
compression case, we are interested in the empirical risk ofthe classifier on the examples not in the
compression set (consistent compression set assumption).Now, let δr be aδ-weighed measure on
the classifier space, i.e.,i andσ. Then, for the compression sets and associated message strings,

2Hence, the missingS in the subscript ofπ(h) in the r.h.s. above.
3Alternatively, letP (zi, σ) andQ(zi, σ) denote the probability densities of the prior distributionP and

rescaled posterior distributionsQ over classifiers such thatdQ = Q(zi, σ)dµ anddP = P (zi, σ)dµ w.r.t.

some measureµ. This too yieldsdQ

dP
= Q(zi,σ)

P (zi,σ)
. Note that the final expression is independent of the underlying

measureµ.



consider the following bad event with empirical risk of the classifier measured asBinS((zi, σ)) for
i ∼ QI , σ ∼ QM(zi):

B(h, δ) =
{

R(zi, σ) > Bin(Rz
i
(zi, σ), δr)

}

Now, we replaceδr with the level function of Occam’s hammer (with the same assumption ofΠ =
P, π = 1):

min(δπ(hS)β(ψzm(i, σ)−1), 1) ≤ δ · min((k + 1)−1ψzm(i, σ)−
k+1

k , 1)

≤ δ ·
1

max((k + 1)ψzm(i, σ)
k+1

k , 1)

≤ δ
1

(k + 1)max(ψzm(i, σ)
k+1

k , 1)

≤
δ

(k + 1)ψzm(i, σ)
k+1

k

Hence, we have proved the following:

Theorem 5 For any reconstruction functionR : Dm × K −→ H and for any prior distributionP
over the compression set and message strings, the sample compression algorithmsA(S) returns a
posterior distributionQ, then, forδ ∈ (0, 1] andk > 0, we have:

Pr
S∼Dm,i∼QI ,σ∼QM(z

i
)

[

R(zi, σ) ≤ Bin

(

Rz
i
(zi, σ),

δ

(k + 1)
(

Q(zi,σ)
P (zi,σ)

)
k+1

k

)]

≥ 1 − δ

We can obtain a looser bound by approximating the binomial tail inversion bound using [Laviolette
et al., 2005, Lemma 1]:

Corollary 6 Given all our previous definitions, the following holds withprobability1 − δ over the
joint draw ofS ∼ Dm andi ∼ QI , σ ∼ QM(zi):

R(zi, σ) ≤ 1 − exp

(

−1

m− |i| − |i|Rz
i
(zi, σ)

[

ln

(

m− |i|

|i|Rz
i
(zi, σ)

)

+ ln

(

k + 1

δ

)

+ (1 +
1

k
) ln

(

Q(zi, σ)

P (zi, σ)

)])

5 Recovering the PAC-Bayes bound for SC Gibbs Classifier
Let us now see how a bound can be obtained for the Gibbs setting. We follow the general line of
argument of Blanchard and Fleuret [2007] to recover the PAC-Bayes bound for the Sample Com-
pressed Gibbs classifier. However, note that we do this for the data-dependent setting here and also
utilize the rescaled posterior over the space of sample compressed classifiers.

The PAC-Bayes bound of Theorem 4 basically states that

ES∼Dm [ Pr
i∼QI ,σ∼QM(z

i
)

[kl(Rz
i
(zi, σ)‖R(zi, σ)) > ϕ(δ)]] ≤ δ

where

ϕ(δ) =
1

m− |i|

[

ln
(k + 1

δ

)

+ (1 +
1

k
) ln+

(

Q(zi, σ)

P (zi, σ)

)]

Consequently,

ES∼Dm [ Pr
i∼QI ,σ∼QM(z

i
)

[kl(Rz
i
(zi, σ)‖R(zi, σ)) > ϕ(δγ)]] ≤ δγ

Now, bounding the argument of expectancy above using the Markov inequality, we get:

Pr
S∼Dm

[

Pr
i∼QI ,σ∼QM(z

i
)

[kl(Rz
i
(zi, σ)‖R(zi, σ)) > ϕ(δγ)] > γ

]

≤ δ



Now, discretizing the argument over(δi, γi) = (δ2−i, 2−i), we obtain

Pr
S∼Dm

[

Pr
i∼QI ,σ∼QM(z

i
)

[kl(Rz
i
(zi, σ)‖R(zi, σ)) > ϕ(δiγi)] > γi

]

≤ δi

Taking the union bound overδi, i ≥ 1 now yields:

Pr
S∼Dm

[

Pr
i∼QI ,σ∼QM(z

i
)

[kl(Rz
i
(zi, σ)‖R(zi, σ)) > ϕ(δ2−2i] ≤ 2−i

]

> 1 − δ ∀i ≥ 0

Now, let us consider the argument of the above statement for afixed sampleS. Then, for alli ≥ 0,
the following holds with probability1 − δ:

Pr
i∼QI ,σ∼QM(z

i
)

[

kl(Rz
i
(zi, σ)‖R(zi, σ)) >

1

m− |i|

[

ln
(k + 1

δ

)

+ 2i ln 2

+ (1 +
1

k
) ln+

(

Q(zi, σ)

P (zi, σ)

)]]

≤ 2−i

and hence:

Pr
i∼QI ,σ∼QM(z

i
)

[

ΦS(zi, σ) > 2i ln 2

]

≤ 2−i

where:

ΦS(zi, σ) = (m− |i|)kl(Rz
i
(zi, σ)‖R(zi, σ)) − ln

(k + 1

δ

)

− (1 +
1

k
) ln+

(

Q(zi, σ)

P (zi, σ)

)

We wish to bound, for the Gibbs classifier,Ei∼QI ,σ∼QM(z
i
)
ΦS(zi, σ):

E
i∼QI ,σ∼QM(z

i
)
[ΦS(zi, σ)] ≤

∫

2i ln 2>0

Pr
i∼QI ,σ∼QM(z

i
)

[ΦS(zi, σ) ≥ 2i ln 2]d(2i ln 2)

≤ 2 ln 2
∑

i≥0

Pr
i∼QI ,σ∼QM(z

i
)
[ΦS(zi, σ) ≥ 2i ln 2] ≤ 3 (5)

Now, we have:

Lemma 7 [Laviolette and Marchand, 2007] For anyf : K −→ R
+, and for anyQ,Q′ ∈ PK

related by

Q′(zi, σ)f(zi, σ) =
1

E(zi,σ)∼Q
1

f(zi,σ)

Q(zi, σ),

we have:

E(zi,σ)∼Q′

(

f(zi, σ)kl(Rz
i
(zi, σ)‖R(zi, σ))

)

≥
1

E(zi,σ)∼Q

(

1
f(zi,σ)

)kl(RS(GQ)‖R(GQ))

whereRS(GQ) andR(GQ) denote the empirical and true risk of the Gibbs classifier with posterior
Q respectively.

Hence, withQ′ = Q andf(zi, σ) = |i|, Lemma 7 yields:

E(zi,σ)∼Q(|i|kl(Rz
i
(zi, σ)‖R(zi, σ))) ≥

1
1

m−d
Q

kl(RS(GQ)‖R(GQ)) (6)

Further,

Ei∼QI ,σ∼QM(z
i
)

[

ln+
Q(zi, σ)

P (zi, σ)

]

= Ei∼QI ,σ∼QM(z
i
)

[

ln+

(

Q(zi, σ)

PI(i)PM(zi)(σ)

)]

= E(zi,σ)∼P

[(

Q(zi, σ)

PI(i)PM(zi)(σ)

)

· ln+

(

Q(zi, σ)

PI(i)PM(zi)(σ)

)]

≤ E(zi,σ)∼P

[(

Q(zi, σ)

PI(i)PM(zi)(σ)

)

· ln

(

Q(zi, σ)

PI(i)PM(zi)(σ)

)]

− max
0≤x<1

x lnx

≤ KL(Q‖P ) + 0.5 (7)



Equations 6 and 7 along with Equation 5 and substitutingk = m− 1 yields the final result:

Theorem 8 For any reconstruction functionR : Dm × K −→ H and for any prior distributionP
over compression set and message strings, forδ ∈ (0, 1], we have:

Pr
S∼Dm

(

∀Q ∈ PK : kl(RS(GQ)‖R(GQ))

≤
1

m− dQ

[

(

1 +
1

m− 1

)

KL(Q‖P ) +
1

2(m− 1)
+ ln

(m

δ

)

+ 3.5

])

≥ 1 − δ

Theorem 8 recovers almost exactly the PAC-Bayes bound for the Sample Compressed Classifiers
of Laviolette and Marchand [2007]. The key differences are an additional 1

(m−dQ)(m−1) weighted

KL-divergence term,ln(m
δ
) instead of theln(m+1

δ
) and the additional trailing terms bounded by

4
m−dQ

. Note that the bound of Theorem 8 is derived in a relatively more straightforward manner

with the Occam’s Hammer criterion.

6 Conclusion
It has been shown that stochastic classifier selection is preferable to deterministic selection by the
PAC-Bayes principle resulting in tighter risk bounds over averaged risk of classifiers according to
the learned posterior. Further, this observation resultedin tight bounds in the case of stochastic
sample compressed classifiers [Laviolette and Marchand, 2007] also showing that sparsity consid-
erations are of importance even in this scenario via. the rescaled posterior. However, of immediate
relevance are the guarantees of the specific classifier output by such algorithms according to the
learned posterior and hence a point-wise version of this bound is indeed needed. We have derived
bounds for such randomized sample compressed classifiers byadapting Occam’s Hammer principle
to the data-dependent sample compression settings. This has resulted in bounds on the specific clas-
sifier output by a sample compression learning algorithm according to the learned data-dependent
posterior and is more relevant in practice. Further, we alsoshowed how classical PAC-Bayes bound
for the sample compressed Gibbs classifier can be recovered in a more direct manner and show that
this compares favorably to the existing result of Laviolette and Marchand [2007].
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