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Abstract—Many application systems are transforming from 
device centric architectures to cloud based systems that leverage 
shared compute resources to reduce cost and maximize reach.  
These systems require new paradigms to assure availability and 
quality of service. In this paper, we discuss the challenges in 
assuring Availability and Quality of Service in a Cloud Based 
Application System. We propose machine learning techniques for 
monitoring systems logs to assess the health of the system.  A web 
services data set is employed to show that variety of services can 
be clustered to different service classes using a k-means 
clustering scheme. Reliability, Availability, and Serviceability 
(RAS) logs and Job logs dataset from high performance 
computing system is employed to show that impending fatal 
errors in the system can be predicted from the logs using an SVM 
classifier. These approaches illustrate the feasibility of methods to 
monitor the systems health and performance of compute 
resources and hence can be used to manage these systems for  
high availability and quality of service for critical tasks such as 
health care monitoring in the cloud.  
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I.  INTRODUCTION 
Prognostics and Health monitoring (PHM) is a vast field 

sometimes intersecting with fields of condition-based 
maintenance and monitoring and diagnostics – see [1] for a 
good overview of the field and [2]-[5] for surveys of the state 
of the art.   Prognostics from pro-gnosis, means “knowing 
ahead” and is the heart of GE’s recent thrust into analytics – we 
seek to have no unpredicted failures of systems and have made 
significant investment into analytics technologies towards this 
end [9]. 

   Prognostic algorithms are generally either data driven – 
formed by mining historical data, or physics based – driven by 
physical models that estimate system response.  In the domain 
of Cloud type of computational systems both type of 
prognostics algorithms have been employed – the former in 
mining logs for prediction of failure, the later in assessing 
electronics equipment for physical predictors of impending loss 
(see [6]-[8] for results related to a large data center prognostics 
project).  However relatively few papers have looked at 
systems level prognostics for cloud based critical systems.  
Furthermore, large-scale systems that aim to connect edge 
devices to the cloud are relatively novel system concepts which 
directly enable data access via client devices as well as 
potential aggregate analysis. Consequently, availability and 
quality of service assurance are not just extremely important 

but also acquire new meanings as a result of the scale, 
complexity and additional dependencies introduced by various 
data transmission phases in the end-to-end system. Hence, 
detecting and localizing QoS degradation and loss of 
availability is non-trivial and pose significantly higher 
challenges. 

In this paper we explore data driven prognostics of large 
computer systems using publically available data sets (logs) 
that we mine to form models capable of detecting impending 
failure. This is a first step in determining whether the QoS and 
log data from these large-scale systems are amenable to 
aggregate analysis towards building a quality assurance 
framework. These evaluations are also aimed at highlighting 
the requirements in terms of system monitoring and identifying 
hardware and software sensor requirements so as to enable QoS 
status monitoring. Note that while the quality requirements for 
such large-scale systems may take similar form as traditional 
systems (e.g., service response time), the composite QoS 
behavior metrics and characterizations need not be the same. 
Often, as illustrated by the experiments below, the QoS in such 
cases results from complex interactions of quality parameters.  

The parameters and the associated dependencies are 
sometimes well studied for specific parts of the system (e.g., 
data transmission from edge devices to a central server via 
wireless routing). However, their inter-relationship with the 
rest of the components in the stream is understudied partly 
because these system concepts are still in a nascent stage of 
design and deployment. The experiments in this work are 
aimed at confirming whether inter-relationships between 
various quality and performance parameters can be studied 
together to correlate them with the QoS. To this end, we study 
two datasets. A web services data set Error! Reference source 
not found.-Error! Reference source not found. is employed 
to study whether a variety of services can be grouped in service 
classification based on their quality parameters. The 
Reliability, Availability, and Serviceability (RAS) logs and Job 
logs dataset [10]-[18] is employed to determine whether the 
RAS and system job logs can act as reliable indicators for loss 
of service due to fatal errors in the system. 

The rest of the paper is organized as follows. In section II 
we describe the data sets that are explored.  In Section III we 
describe the machine learning algorithms we use to train and 
apply system prognostic models.  Results are described in 
section IV, and the paper concludes with recommendation for 
next steps in Section V.   



II. DATA SETS 
Two data sets in the public domain are explored to 

determine the feasibility of systems prognostics of large 
compute systems.  Section A describes a Web services data set, 
and Section B a system log data set.   

A. Web services data set 
The web services dataset Error! Reference source not 

found.-Error! Reference source not found. consists of 
various Quality of Web Service (QWS) measurements on 2507 
real web service implementations. The services were collected 
using a crawler engine with the QWS measurements conducted 
in March 2008 using a web service broker framework. The 
QoS attributes covered in the study for each service included 
Response time, Availability, Throughput, Successability, 
Reliability, Compliance, Best Practices, Latency and 
Documentation.  

TABLE III.  PARAMETERS AND UNITS OF THE WEB SERVICES DATASET OF  
AL-MASRI AND MAHMOOUD (2008). 

ID Parameter 
Name 

Description Units 

1 Response Time Time taken to send a request and receive a response ms 

2 Availability No. of successful invocations/total invocations % 

3 Throughput Total number of invocations for a given period of time Invokes/sec 

4 Successability Number of responses / number of request messages % 

5 Reliability Ratio of the number of error messages to total 
messages 

% 

6 Compliance The extent to which a WSDL document follows 
WSDL specification 

% 

7 Best Practices The extent to which a web service follows WS-I Basic 
Profile 

% 

8 Latency Time taken for the server to process a given request ms 

9 Documentation Measure of documentation (i.e. description tags) in 
WSDL 

% 

Table III shows the QoS attributes of the web services 
dataset along with their description and the units of 
measurement. The original study also consisted of calculating a 
web services relevancy function using a weighted sum of 
normalized attribute values. This function was subsequently 

utilized to generate four service classifications based on the 
overall quality rating. In our study, these attributes are used in 
an unsupervised learning approach using k-means clustering to 
group different services in different cases. 

B. BlueGeneP RAS Log from ANL 
Recent thrust on high performance computing (HPC) 

environment to provide cloud services has led to numerous 
studies on failure analysis. In order to maintain and monitor 
HPCs, typically service logs are generated to indicate the health 
of the system and its components. Some literature already 
exists which analyzes the service logs to characterize errors, 
provide root cause analysis and predict failures [10-16].    

The data set used for this study is based on the IBM Blue 
Gene/P system at Argonne National Labs. It consists of a 273-
day RAS and Job log collected in the ANL system. The logs 
and associated information are also available for download 
from [17] and [18]. More details about the HPC system and the 
log data used for the analysis can be found in [10]. Here we 
summarize the main attributes of the data se. 

 RAS Log: The Reliability, Availability and Serviceability 
Logs on Blue Gene/P are collected using the Core Monitoring 
and Control Systems (CMCS) which monitors compute nodes, 
I/O nodes and various other network components. The 
collected fields in the RAS logs are given in the Table I. In this 
work we consider the SEVERITY field and in particular where 
the severity is denoted as FATAL. A fatal event usually 
denotes a failure of a critical component which leads to an 
application crash, a hardware crash or severe loss of a service. 
Using the log entries preceding a fatal error, we study whether 
the fatal errors can be predicted.   

Job Log: We also consider the Job Log or the records of 
jobs scheduled on the HPC by the scheduler Cobalt Note: 
(http://trac.mcs.anl.gov/projects/cobalt/). An example of the 
Job log is given in the Table II. While the RAS logs provides 
the notable events occurring in the HPC cluster, the job log 
provides application level information to further delve into the 
root cause analysis of a particular problem. The job log may 
also help differentiate between software and hardware failures 
by localizing a fault to a particular application since the RAS 
logs typically provide only system level messages. A joint 

TABLE I.  RAS LOG FIELDS 

 

TABLE II.  JOB LOG FIELDS 

 



analysis of both RAS and Job logs similar to [10] is planned for 
the future. In this study we look at them individually.  

III. ALGORITHMS 

A. Unsupervised Learning of Web Services Logs 
The original study of Al-Masri et. al  [19, 20] treated the 

web services dataset in a supervised machine learning setting 
by the virtue of ranking (and hence, instance labels) generated 
using the relevancy function. In contrast, we treat the data 
independent of labels. The main reason for not employing the 
relevancy function is because it was not availability with the 
data set. The relevancy function, involved a weighted sum of 
normalized attribute values. The weights in this case 
correspond to the relative importance of the QoS attributes in 
the final QoS scoring as determined by the user. While an 
importance ranking of attributes can be obtained based on the 
priority of the users, we cannot compute and confirm their 
relative weights without additional information. As a result, we 
aim to discover if the data reveals a “natural groupings” 
allowing us to categorize the web services for further analysis. 
In practice such an approach may be more suited to a wider 
array of service classifications since it is completely data 
driven and unsupervised. 

To categorize services into different classes, we study the 
histogram profiles of selected attributes to investigate the 
attribute value landscape across the web services. Since the 
scales of the captured QoS attributes are not directly 
comparable, we normalize the attribute values in [0,1] interval. 
We then employ principal component analysis (PCA) [22] to 

obtain the three major directions of variance for visualization 
purposes. PCA involves an orthogonal transformation of data 
by eigenvalue decomposition so that the resulting data 
dimensions are linearly uncorrelated. These dimensions, known 
as principal components, are obtained such that they are 
arranged in decreasing order of their variance. We use the top 
three dimensions (variables) with the highest variance to 
visually explore the data. 

In order to discover the natural groupings of data instances 
in the original attribute space, we map the problem to an 
unsupervised machine learning problem. The motivation was to 
validate if the data clusters in the original space allowing us to 
group services by their “similarity” (as defined by the 
similarity metric used by the clustering method). To this end, 
we employ a k-means clustering algorithm [22] to perform data 
clustering in the original 9-dimensional data space. A k-means 
clustering algorithm is aimed to divide the dataset into k 
groups. The group that each data instance belongs to is 
determined as the one with the closest mean. While 
determining the best k, and hence the optimal number of 
groups to fit the data, is non-trivial, we chose k=4 so as to be 
consistent with the groupings obtained in the original study in 
four service classification using the relevancy function. 

Note that we do not currently perform clustering on PCA 
transformed data. Given that PCA has a symbiotic relationship 
with k-means clustering method, the next step would be to 
cluster data on PCA transformed space. We use the PCA and k-
means clustering algorithm implementations available as a part 
of the scikit learn library for Python [23]. 

TABLE IV.  TYPICAL LINES IN THE RAS LOGS 

 

TABLE V.  DIFFERENT KEYWORDS WITH INDEXES EXTRACTED FROM PARSED LOG ENTRIES. 

 
 



B. Predicting FATAL Errors on RAS logs using Support 
Vector Machines.     
In order to predict fatal errors we consider a list of log 

entries preceding it, and use Support Vector Machine [16] 
based classifier to decide whether the log entries suggest an 
impending fatal error or a normal state (with non-fatal or no 
errors) of the system. SVM is a standard supervised learning 
technique which has been extensively used for classification 
and regression analysis of data. It has proved particularly useful 
when the relative utility of different attributes (from a 
classification point of view) is not well understood for a 
complex system with a high dimensional feature space. 

Before we can employ the SVM based classification, we 
need to do some preprocessing of the RAS logs to extract 
relevant information from the RAS logs. Table IV shows how 
RAS log entries appear as semi-structured text. We parse the 
log one line at a time to extract the values of the different fields 
such as MSG_ID, SUBCOMPONENT etc.  For each unique 
value of each RAS field a unique code index is generated. 
Table V gives examples of unique words or values extracted 
for each field along with the index number for each of them.  
Finally using the indexes, the RAS log is converted into a 
codebook with the actual words associated with each field 
converted to an index entry as shown in Table VI. 

TABLE VI.  RAS LOGS WITH KEYWORDS INDEXED  

 
 

 
Figure 1: Figure showing the sequence of keywords appearing in a block log 

entries for different RAS fields along with the histogram of the keyword 
frequency in each field. 

 
Figure 2: for the figure 345 distinct blocks leading fatal errors and 1000 non-fatal 

blocks were sued. The graph shows the classification accuracy with different 
fraction of the dataset used in the training period.  

 
Figure 3: Figure showing the process interarrival times 

 
Figure 4: Figure showing histogram of process run time 



Next, we look at the predictability of FATAL errors (i.e. 
lines with SEVERITY entry as FATAL) using the log entries 
preceding them. We consider a fixed window of log entries 
preceding each fatal error. The window may consist of a fixed 
number of lines or a fixed time window. In this work we used a 
fixed window of 500 lines to describe a block of logs. 

Our intuition is that the group of log entries would contain 
enough indicator messages which can be used to predict that a 
fatal error is imminent.  In particular we assume that certain 
keywords appearing in the preceding log entries in each field 
can be used to predict the fatal error. Thus keywords, denoted 
by index entries in the codebook may be used as features to 
classify if a preceding block of log entries denote a block 
leading to a fatal error or a non-fatal error.  

Using the keyword entries in the codebook, we create 
feature vectors for different blocks of log entries. Our feature 
vectors are simply histogram of keywords appearing in a fixed 
length block of log entries. The histograms signify the relative 
frequency of certain keywords appearing in the preceding logs 
and high frequency of certain keywords (for example a 

sequence of non-fatal errors) may signify that a severe or fatal 
error is impending. 

The Log entry blocks are divided into two classes as Fatal 
and Non-Fatal (with any warning which is not a fatal error). 
For fatal blocks, we consider all entries with the severity field 
equal to Fatal and generate feature vectors with log entries 
preceding the fatal event. For the results, a group of 500 log 
entries preceding each fatal error were used. For the non-Fatal 
entries, we randomly consider an entry in the log whose 
severity is not fatal and which does not have a fatal event 
within 500 lines of logs before or after it. Thus we get a block 
with no fatal entries in it and create feature vectors belonging 
to the non-fatal class.  

The two feature sets belonging to fatal and non-fatal errors 
further are subdivided into training and testing sets. Finally, the 
training set is used to train a SVM based binary classifier. 
While at this point we are unable to cross-validate the 
groupings with some service class ground truth, preliminary 
results suggests good separation in the classes. A formal 

 
Figure 5: Histogram profile of Availability attribute of web services data 

 
Figure 6: Histogram profile of Throughput attribute of web services data 

 
Figure 7: Histogram profile of Successability attribute of web services data 

 
Figure 8: Histogram profile of Response times of web services 

 

 
Figure 9: Visualization of PCA transform of web services data (top three 

principal components) 

 
Figure 10: Results of k-means clustering (k=4) of web services data 

 



evaluation of the goodness metrics of the clusters is subject of 
future work. 

IV. RESULTS 

A. Web services dataset 
Figures 5-8 present histogram profiles of Availability, 

Throughput, Successability and Response time attributes for 
the web services data. Figure 9 shows the top three principal 
components to illustrate the data distribution along the three 
most variable directions. 

Figure 10 shows the groupings (clusters) obtained using the 
k-means clustering algorithm on the web services data in the 
original data space. In order to visualize the groupings, we 
superimpose the labels (each color on data point represents a 
cluster) on the PCA visualization of the data. 

B. SVM based classification of RAS logs 
As of date we have processed only a small fraction of the 

entire recorded log due to certain data and parsing irregularities 
but the initial results are promising. For the results we were 
able to extract and analyze 345 distinct fatal errors. For the 
non-fatal case we randomly generated 1000 distinct blocks. In 
order to evaluate whether we can distinguish the two different 
sets using the feature vectors, we divided the data set into 
training and testing set. Figure 2 above shows the classification 
accuracy for different SVM kernels used. We see that even 
with a very small set of training examples; we can predict an 
imminent fatal event with extremely high accuracy.  

We have also started evaluating the job logs and plotted 
some statistics related to processes in Figure 3 and Figure 4. As 
described in [10, 11], information such as running time of a job 
has strong correlation with the probability of failure. For 
example [1] shows that longer jobs (and not larger jobs) are 
more susceptible to failures.  We believe that addition of such 
information available from simultaneous from job logs would 
improve the error characterization and predictability. This is 
subject of future work.  

V. CONCLUSIONS AND NEXT STEPS 
The work presents our preliminary investigation on the 

problem of predicting Quality of Service and failures in cloud 
based architecture supporting critical services such for 
healthcare monitoring. We consider a two-pronged approach to 
achieve this. First, web service attributes are used for 
classification and clustering of services that provide application 
level tool and parameters to characterize and predict quality of 
service. Second we analyze RAS logs from HPC clusters that 
would support the services, and study if failures leading to loss 
or degradation of services can be predicted. Our initial results 
are promising and suggest a methodology and technique 
suitable for this purpose.  

This paper presents an initial foray into the analysis of 
cloud based critical services and health monitoring. As future 
work, we would conduct a complete system level analysis 
involving application level monitors, end-to-end service quality 
attributes and system level hardware and software monitors to 

accurately predict service quality in cloud based critical 
services architecture 
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