
Towards Systems Level Prognostics in the Cloud
Assuring Availibility and Quality of Service of Cloud hosted Systems

Budhaditya Deb, Mohak Shah*, Scott Evans
GE Global Research

Niskayuna, NY and San Ramon CA*
{deb, mohak, evans}@ge.com

Manoj Mehta, Anthony Gargulak, and Tom Lasky
GE Healthcare, Life Care Solutions

Milwaukee, WI
{Mehta, Gargulak, Lasky}@ge.com

Abstract—Many application systems are transforming from
device centric architectures to cloud based systems that leverage
shared compute resources to reduce cost and maximize reach.
These systems require new paradigms to assure availability and
quality of service. In this paper, we discuss the challenges in
assuring Availability and Quality of Service in a Cloud Based
Application System. We propose machine learning techniques for
monitoring systems logs to assess the health of the system. A web
services data set is employed to show that variety of services can
be clustered to different service classes using a k-means
clustering scheme. Reliability, Availability, and Serviceability
(RAS) logs and Job logs dataset from high performance
computing system is employed to show that impending fatal
errors in the system can be predicted from the logs using an SVM
classifier. These approaches illustrate the feasibility of methods to
monitor the systems health and performance of compute
resources and hence can be used to manage these systems for
high availability and quality of service for critical tasks such as
health care monitoring in the cloud.

Keywords—Systems Prognostics, Cloud Systems

I. INTRODUCTION
Prognostics and Health monitoring (PHM) is a vast field

sometimes intersecting with fields of condition-based
maintenance and monitoring and diagnostics – see [1] for a
good overview of the field and [2]-[5] for surveys of the state
of the art. Prognostics from pro-gnosis, means “knowing
ahead” and is the heart of GE’s recent thrust into analytics – we
seek to have no unpredicted failures of systems and have made
significant investment into analytics technologies towards this
end [9].

 Prognostic algorithms are generally either data driven –
formed by mining historical data, or physics based – driven by
physical models that estimate system response. In the domain
of Cloud type of computational systems both type of
prognostics algorithms have been employed – the former in
mining logs for prediction of failure, the later in assessing
electronics equipment for physical predictors of impending loss
(see [6]-[8] for results related to a large data center prognostics
project). However relatively few papers have looked at
systems level prognostics for cloud based critical systems.
Furthermore, large-scale systems that aim to connect edge
devices to the cloud are relatively novel system concepts which
directly enable data access via client devices as well as
potential aggregate analysis. Consequently, availability and
quality of service assurance are not just extremely important

but also acquire new meanings as a result of the scale,
complexity and additional dependencies introduced by various
data transmission phases in the end-to-end system. Hence,
detecting and localizing QoS degradation and loss of
availability is non-trivial and pose significantly higher
challenges.

In this paper we explore data driven prognostics of large
computer systems using publically available data sets (logs)
that we mine to form models capable of detecting impending
failure. This is a first step in determining whether the QoS and
log data from these large-scale systems are amenable to
aggregate analysis towards building a quality assurance
framework. These evaluations are also aimed at highlighting
the requirements in terms of system monitoring and identifying
hardware and software sensor requirements so as to enable QoS
status monitoring. Note that while the quality requirements for
such large-scale systems may take similar form as traditional
systems (e.g., service response time), the composite QoS
behavior metrics and characterizations need not be the same.
Often, as illustrated by the experiments below, the QoS in such
cases results from complex interactions of quality parameters.

The parameters and the associated dependencies are
sometimes well studied for specific parts of the system (e.g.,
data transmission from edge devices to a central server via
wireless routing). However, their inter-relationship with the
rest of the components in the stream is understudied partly
because these system concepts are still in a nascent stage of
design and deployment. The experiments in this work are
aimed at confirming whether inter-relationships between
various quality and performance parameters can be studied
together to correlate them with the QoS. To this end, we study
two datasets. A web services data set Error! Reference source
not found.-Error! Reference source not found. is employed
to study whether a variety of services can be grouped in service
classification based on their quality parameters. The
Reliability, Availability, and Serviceability (RAS) logs and Job
logs dataset [10]-[18] is employed to determine whether the
RAS and system job logs can act as reliable indicators for loss
of service due to fatal errors in the system.

The rest of the paper is organized as follows. In section II
we describe the data sets that are explored. In Section III we
describe the machine learning algorithms we use to train and
apply system prognostic models. Results are described in
section IV, and the paper concludes with recommendation for
next steps in Section V.

II. DATA SETS
Two data sets in the public domain are explored to

determine the feasibility of systems prognostics of large
compute systems. Section A describes a Web services data set,
and Section B a system log data set.

A. Web services data set
The web services dataset Error! Reference source not

found.-Error! Reference source not found. consists of
various Quality of Web Service (QWS) measurements on 2507
real web service implementations. The services were collected
using a crawler engine with the QWS measurements conducted
in March 2008 using a web service broker framework. The
QoS attributes covered in the study for each service included
Response time, Availability, Throughput, Successability,
Reliability, Compliance, Best Practices, Latency and
Documentation.

TABLE III. PARAMETERS AND UNITS OF THE WEB SERVICES DATASET OF
AL-MASRI AND MAHMOOUD (2008).

ID Parameter
Name

Description Units

1 Response Time Time taken to send a request and receive a response ms

2 Availability No. of successful invocations/total invocations %

3 Throughput Total number of invocations for a given period of time Invokes/sec

4 Successability Number of responses / number of request messages %

5 Reliability Ratio of the number of error messages to total
messages

%

6 Compliance The extent to which a WSDL document follows
WSDL specification

%

7 Best Practices The extent to which a web service follows WS-I Basic
Profile

%

8 Latency Time taken for the server to process a given request ms

9 Documentation Measure of documentation (i.e. description tags) in
WSDL

%

Table III shows the QoS attributes of the web services
dataset along with their description and the units of
measurement. The original study also consisted of calculating a
web services relevancy function using a weighted sum of
normalized attribute values. This function was subsequently

utilized to generate four service classifications based on the
overall quality rating. In our study, these attributes are used in
an unsupervised learning approach using k-means clustering to
group different services in different cases.

B. BlueGeneP RAS Log from ANL
Recent thrust on high performance computing (HPC)

environment to provide cloud services has led to numerous
studies on failure analysis. In order to maintain and monitor
HPCs, typically service logs are generated to indicate the health
of the system and its components. Some literature already
exists which analyzes the service logs to characterize errors,
provide root cause analysis and predict failures [10-16].

The data set used for this study is based on the IBM Blue
Gene/P system at Argonne National Labs. It consists of a 273-
day RAS and Job log collected in the ANL system. The logs
and associated information are also available for download
from [17] and [18]. More details about the HPC system and the
log data used for the analysis can be found in [10]. Here we
summarize the main attributes of the data se.

 RAS Log: The Reliability, Availability and Serviceability
Logs on Blue Gene/P are collected using the Core Monitoring
and Control Systems (CMCS) which monitors compute nodes,
I/O nodes and various other network components. The
collected fields in the RAS logs are given in the Table I. In this
work we consider the SEVERITY field and in particular where
the severity is denoted as FATAL. A fatal event usually
denotes a failure of a critical component which leads to an
application crash, a hardware crash or severe loss of a service.
Using the log entries preceding a fatal error, we study whether
the fatal errors can be predicted.

Job Log: We also consider the Job Log or the records of
jobs scheduled on the HPC by the scheduler Cobalt Note:
(http://trac.mcs.anl.gov/projects/cobalt/). An example of the
Job log is given in the Table II. While the RAS logs provides
the notable events occurring in the HPC cluster, the job log
provides application level information to further delve into the
root cause analysis of a particular problem. The job log may
also help differentiate between software and hardware failures
by localizing a fault to a particular application since the RAS
logs typically provide only system level messages. A joint

TABLE I. RAS LOG FIELDS

TABLE II. JOB LOG FIELDS

analysis of both RAS and Job logs similar to [10] is planned for
the future. In this study we look at them individually.

III. ALGORITHMS

A. Unsupervised Learning of Web Services Logs
The original study of Al-Masri et. al [19, 20] treated the

web services dataset in a supervised machine learning setting
by the virtue of ranking (and hence, instance labels) generated
using the relevancy function. In contrast, we treat the data
independent of labels. The main reason for not employing the
relevancy function is because it was not availability with the
data set. The relevancy function, involved a weighted sum of
normalized attribute values. The weights in this case
correspond to the relative importance of the QoS attributes in
the final QoS scoring as determined by the user. While an
importance ranking of attributes can be obtained based on the
priority of the users, we cannot compute and confirm their
relative weights without additional information. As a result, we
aim to discover if the data reveals a “natural groupings”
allowing us to categorize the web services for further analysis.
In practice such an approach may be more suited to a wider
array of service classifications since it is completely data
driven and unsupervised.

To categorize services into different classes, we study the
histogram profiles of selected attributes to investigate the
attribute value landscape across the web services. Since the
scales of the captured QoS attributes are not directly
comparable, we normalize the attribute values in [0,1] interval.
We then employ principal component analysis (PCA) [22] to

obtain the three major directions of variance for visualization
purposes. PCA involves an orthogonal transformation of data
by eigenvalue decomposition so that the resulting data
dimensions are linearly uncorrelated. These dimensions, known
as principal components, are obtained such that they are
arranged in decreasing order of their variance. We use the top
three dimensions (variables) with the highest variance to
visually explore the data.

In order to discover the natural groupings of data instances
in the original attribute space, we map the problem to an
unsupervised machine learning problem. The motivation was to
validate if the data clusters in the original space allowing us to
group services by their “similarity” (as defined by the
similarity metric used by the clustering method). To this end,
we employ a k-means clustering algorithm [22] to perform data
clustering in the original 9-dimensional data space. A k-means
clustering algorithm is aimed to divide the dataset into k
groups. The group that each data instance belongs to is
determined as the one with the closest mean. While
determining the best k, and hence the optimal number of
groups to fit the data, is non-trivial, we chose k=4 so as to be
consistent with the groupings obtained in the original study in
four service classification using the relevancy function.

Note that we do not currently perform clustering on PCA
transformed data. Given that PCA has a symbiotic relationship
with k-means clustering method, the next step would be to
cluster data on PCA transformed space. We use the PCA and k-
means clustering algorithm implementations available as a part
of the scikit learn library for Python [23].

TABLE IV. TYPICAL LINES IN THE RAS LOGS

TABLE V. DIFFERENT KEYWORDS WITH INDEXES EXTRACTED FROM PARSED LOG ENTRIES.

B. Predicting FATAL Errors on RAS logs using Support
Vector Machines.
In order to predict fatal errors we consider a list of log

entries preceding it, and use Support Vector Machine [16]
based classifier to decide whether the log entries suggest an
impending fatal error or a normal state (with non-fatal or no
errors) of the system. SVM is a standard supervised learning
technique which has been extensively used for classification
and regression analysis of data. It has proved particularly useful
when the relative utility of different attributes (from a
classification point of view) is not well understood for a
complex system with a high dimensional feature space.

Before we can employ the SVM based classification, we
need to do some preprocessing of the RAS logs to extract
relevant information from the RAS logs. Table IV shows how
RAS log entries appear as semi-structured text. We parse the
log one line at a time to extract the values of the different fields
such as MSG_ID, SUBCOMPONENT etc. For each unique
value of each RAS field a unique code index is generated.
Table V gives examples of unique words or values extracted
for each field along with the index number for each of them.
Finally using the indexes, the RAS log is converted into a
codebook with the actual words associated with each field
converted to an index entry as shown in Table VI.

TABLE VI. RAS LOGS WITH KEYWORDS INDEXED

Figure 1: Figure showing the sequence of keywords appearing in a block log

entries for different RAS fields along with the histogram of the keyword
frequency in each field.

Figure 2: for the figure 345 distinct blocks leading fatal errors and 1000 non-fatal

blocks were sued. The graph shows the classification accuracy with different
fraction of the dataset used in the training period.

Figure 3: Figure showing the process interarrival times

Figure 4: Figure showing histogram of process run time

Next, we look at the predictability of FATAL errors (i.e.
lines with SEVERITY entry as FATAL) using the log entries
preceding them. We consider a fixed window of log entries
preceding each fatal error. The window may consist of a fixed
number of lines or a fixed time window. In this work we used a
fixed window of 500 lines to describe a block of logs.

Our intuition is that the group of log entries would contain
enough indicator messages which can be used to predict that a
fatal error is imminent. In particular we assume that certain
keywords appearing in the preceding log entries in each field
can be used to predict the fatal error. Thus keywords, denoted
by index entries in the codebook may be used as features to
classify if a preceding block of log entries denote a block
leading to a fatal error or a non-fatal error.

Using the keyword entries in the codebook, we create
feature vectors for different blocks of log entries. Our feature
vectors are simply histogram of keywords appearing in a fixed
length block of log entries. The histograms signify the relative
frequency of certain keywords appearing in the preceding logs
and high frequency of certain keywords (for example a

sequence of non-fatal errors) may signify that a severe or fatal
error is impending.

The Log entry blocks are divided into two classes as Fatal
and Non-Fatal (with any warning which is not a fatal error).
For fatal blocks, we consider all entries with the severity field
equal to Fatal and generate feature vectors with log entries
preceding the fatal event. For the results, a group of 500 log
entries preceding each fatal error were used. For the non-Fatal
entries, we randomly consider an entry in the log whose
severity is not fatal and which does not have a fatal event
within 500 lines of logs before or after it. Thus we get a block
with no fatal entries in it and create feature vectors belonging
to the non-fatal class.

The two feature sets belonging to fatal and non-fatal errors
further are subdivided into training and testing sets. Finally, the
training set is used to train a SVM based binary classifier.
While at this point we are unable to cross-validate the
groupings with some service class ground truth, preliminary
results suggests good separation in the classes. A formal

Figure 5: Histogram profile of Availability attribute of web services data

Figure 6: Histogram profile of Throughput attribute of web services data

Figure 7: Histogram profile of Successability attribute of web services data

Figure 8: Histogram profile of Response times of web services

Figure 9: Visualization of PCA transform of web services data (top three

principal components)

Figure 10: Results of k-means clustering (k=4) of web services data

evaluation of the goodness metrics of the clusters is subject of
future work.

IV. RESULTS

A. Web services dataset
Figures 5-8 present histogram profiles of Availability,

Throughput, Successability and Response time attributes for
the web services data. Figure 9 shows the top three principal
components to illustrate the data distribution along the three
most variable directions.

Figure 10 shows the groupings (clusters) obtained using the
k-means clustering algorithm on the web services data in the
original data space. In order to visualize the groupings, we
superimpose the labels (each color on data point represents a
cluster) on the PCA visualization of the data.

B. SVM based classification of RAS logs
As of date we have processed only a small fraction of the

entire recorded log due to certain data and parsing irregularities
but the initial results are promising. For the results we were
able to extract and analyze 345 distinct fatal errors. For the
non-fatal case we randomly generated 1000 distinct blocks. In
order to evaluate whether we can distinguish the two different
sets using the feature vectors, we divided the data set into
training and testing set. Figure 2 above shows the classification
accuracy for different SVM kernels used. We see that even
with a very small set of training examples; we can predict an
imminent fatal event with extremely high accuracy.

We have also started evaluating the job logs and plotted
some statistics related to processes in Figure 3 and Figure 4. As
described in [10, 11], information such as running time of a job
has strong correlation with the probability of failure. For
example [1] shows that longer jobs (and not larger jobs) are
more susceptible to failures. We believe that addition of such
information available from simultaneous from job logs would
improve the error characterization and predictability. This is
subject of future work.

V. CONCLUSIONS AND NEXT STEPS
The work presents our preliminary investigation on the

problem of predicting Quality of Service and failures in cloud
based architecture supporting critical services such for
healthcare monitoring. We consider a two-pronged approach to
achieve this. First, web service attributes are used for
classification and clustering of services that provide application
level tool and parameters to characterize and predict quality of
service. Second we analyze RAS logs from HPC clusters that
would support the services, and study if failures leading to loss
or degradation of services can be predicted. Our initial results
are promising and suggest a methodology and technique
suitable for this purpose.

This paper presents an initial foray into the analysis of
cloud based critical services and health monitoring. As future
work, we would conduct a complete system level analysis
involving application level monitors, end-to-end service quality
attributes and system level hardware and software monitors to

accurately predict service quality in cloud based critical
services architecture

REFERENCES

[1] G. Vachtsevanos, F. L. Lewis, M. Roemer, A. Hess and B. Wu,
Intelligent Fault Diagnosis and Prognosis for Engineering Systems, John
Wiley & Sons, Inc., 2006.

[2] M. Schwabacher (2005), "A Survey of Data-Driven Prognostics",
Proceedings of the AIAA Infotech@Aerospace Conference, Arlington,
Virginia, September 26-29, 2005.

[3] M. Schwabacher and K. Goebel (2007), "A Survey of Artificial
Intelligence for Prognostics", Proceedings of the AAAI Fall Symposium,
Arlington, Virginia, 2007.

[4] J. B. Coble and J. W. Hines (2008), "Prognostic Algorithm
Categorization with PHM Challenge Application", Proceedings of the
2008 International Conference on Prognostics and Health Management,
October 6-9, 2008.

[5] A. B. Chandola and V. Kumar (2009), "Anomaly Detection: A Survey",
ACM Computing Surveys, Vol. 43, No. 3, 2009.

[6] Urmanov, A. and Bougaev, A., “ Prognostics in Data Centers,”
http://www.stanford.edu/class/ee392m/Lecture7Urmanov.pdf

[7] Urmanov, “Electronic Prognostics for Computer Servers,” Reliability
and Maintainability Symposium, 2007. RAMS '07, 22-25 Jan. 2007

[8] Bougaev, Urmanov, “ R-functions Based Classification for Abnormal
SoftwareProcess Detection,” Lecture Notes in Computer Science,
Volume 3801/2005, Computational Intelligence and Security, Springer
Berlin / Heidelberg

[9] Garvey, Dustin; Evans, Scott; Iyer, Naresh; Varma, Anil; Yan,
Weizhong; Bouqata, Bouchra, “Iscale, and Introduction,” GRC
Technical report 2012GRC608

[10] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan, D.
Buettner, Co-analysis of RAS Log and Job Log on Blue Gene/P,
International Parallel & Distributed Processing Symposium (IPDPS),
2011

[11] Y. Liang , Y. Zhang , M. Jette , A. Sivasubramaniam , R. Sahoo,
BlueGene/L Failure Analysis and Prediction Models, International
Conference on Dependable Systems and Networks, 06

[12] Mengliao Wang, Xiaoyu Shi, Ken Wong, , Learning Configuration Files
for Automatic Fault Diagnosis, International Conference on Program
Comprehension (ICPC), 2011

[13] Wei Zhou, Jianfeng Zhan, Dan Meng: Multidimensional Analysis of
System Logs in Large-scale Cluster Systems. CoRR
abs/0906.1328 (2009)

[14] Z. Lan, Y. Li, P. Gujrati, Z. Zheng, R. Thakur, and J. White, "A Fault
Diagnosis and Prognosis Service for TeraGrid Clusters", Proc. of
TeraGrid'07 , 2007.

[15] Resource management on Cloud systems with Machine Learning ,
Master’s Thesis, Zhenyu Fang, Technical University of Catalonia

[16] Cortes, Corinna; and Vapnik, Vladimir N.; "Support-Vector Networks",
Machine Learning, 20, 1995.

[17] Parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload

[18] Usenix Computer Failure Data Repository, http://cfdr.usenix.org
[19] E. Al-Masri, and Q. H. Mahmoud, “QoS-based Discovery and Ranking

of Web Services”, IEEE 16th International Conference on Computer
Communications and Networks (ICCCN), 529-534, 2007.

[20] E. Al-Masri, and Q. H. Mahmoud, “Investigating Web Services on the
World Wide Web”, 17th International Conference on World Wide Web
(WWW), 795-804, 2008.

[21] QWS Data URL: http://www.uoguelph.ca/~qmahmoud/qws/index.htm
[22] Bishop, C. M., Pattern Recognition and Machine Learning, Springer,

2006
[23] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,

pp. 2825-2830, 2011

