Towards Systems Level Prognostics in the Cloud
Assuring Availibility and Quality of Service of Cloud hosted Systems

Budhaditya Deb, Mohak Shah*, Scott Evans

GE Global Research
Niskayuna, NY and San Ramon CA*
{deb, mohak, evans}@ge.com

Abstract—Many application systems are transforming from
device centric architectures to cloud based systems that leverage
shared compute resources to reduce cost and maximize reach.
These systems require new paradigms to assure availability and
quality of service. In this paper, we discuss the challenges in
assuring Availability and Quality of Service in a Cloud Based
Application System. We propose machine learning techniques for
monitoring systems logs to assess the health of the system. A web
services data set is employed to show that variety of services can
be clustered to different service classes using a k-means
clustering scheme. Reliability, Availability, and Serviceability
(RAS) logs and Job logs dataset from high performance
computing system is employed to show that impending fatal
errors in the system can be predicted from the logs using an SVM
classifier. These approaches illustrate the feasibility of methods to
monitor the systems health and performance of compute
resources and hence can be used to manage these systems for
high availability and quality of service for critical tasks such as
health care monitoring in the cloud.

Keywords—Systems Prognostics, Cloud Systems

L. INTRODUCTION

Prognostics and Health monitoring (PHM) is a vast field
sometimes intersecting with fields of condition-based
maintenance and monitoring and diagnostics — see [1] for a
good overview of the field and [2]-[5] for surveys of the state
of the art. Prognostics from pro-gnosis, means ‘“knowing
ahead” and is the heart of GE’s recent thrust into analytics — we
seek to have no unpredicted failures of systems and have made
significant investment into analytics technologies towards this
end [9].

Prognostic algorithms are generally either data driven —
formed by mining historical data, or physics based — driven by
physical models that estimate system response. In the domain
of Cloud type of computational systems both type of
prognostics algorithms have been employed — the former in
mining logs for prediction of failure, the later in assessing
electronics equipment for physical predictors of impending loss
(see [6]-[8] for results related to a large data center prognostics
project). However relatively few papers have looked at
systems level prognostics for cloud based critical systems.
Furthermore, large-scale systems that aim to connect edge
devices to the cloud are relatively novel system concepts which
directly enable data access via client devices as well as
potential aggregate analysis. Consequently, availability and
quality of service assurance are not just extremely important

Manoj Mehta, Anthony Gargulak, and Tom Lasky

GE Healthcare, Life Care Solutions
Milwaukee, W1
{Mehta, Gargulak, Lasky}@ge.com

but also acquire new meanings as a result of the scale,
complexity and additional dependencies introduced by various
data transmission phases in the end-to-end system. Hence,
detecting and localizing QoS degradation and loss of
availability is non-trivial and pose significantly higher
challenges.

In this paper we explore data driven prognostics of large
computer systems using publically available data sets (logs)
that we mine to form models capable of detecting impending
failure. This is a first step in determining whether the QoS and
log data from these large-scale systems are amenable to
aggregate analysis towards building a quality assurance
framework. These evaluations are also aimed at highlighting
the requirements in terms of system monitoring and identifying
hardware and software sensor requirements so as to enable QoS
status monitoring. Note that while the quality requirements for
such large-scale systems may take similar form as traditional
systems (e.g., service response time), the composite QoS
behavior metrics and characterizations need not be the same.
Often, as illustrated by the experiments below, the QoS in such
cases results from complex interactions of quality parameters.

The parameters and the associated dependencies are
sometimes well studied for specific parts of the system (e.g.,
data transmission from edge devices to a central server via
wireless routing). However, their inter-relationship with the
rest of the components in the stream is understudied partly
because these system concepts are still in a nascent stage of
design and deployment. The experiments in this work are
aimed at confirming whether inter-relationships between
various quality and performance parameters can be studied
together to correlate them with the QoS. To this end, we study
two datasets. A web services data set Error! Reference source
not found.-Error! Reference source not found. is employed
to study whether a variety of services can be grouped in service
classification based on their quality parameters. The
Reliability, Availability, and Serviceability (RAS) logs and Job
logs dataset [10]-[18] is employed to determine whether the
RAS and system job logs can act as reliable indicators for loss
of service due to fatal errors in the system.

The rest of the paper is organized as follows. In section II
we describe the data sets that are explored. In Section III we
describe the machine learning algorithms we use to train and
apply system prognostic models. Results are described in
section IV, and the paper concludes with recommendation for
next steps in Section V.

TABLE L.

RAS log Comments
Fields

RECID is the sequence number

MSG_ID Source of the message

COMPONENT Application, Kernel, MC, MMCS,
Baremetal, Card, Diags

SUBCOMPONENT Functional area that
generated the message

ERRCODE Fine-grained event type
information

SEVERITY Debug, Trace, Info, Warning,
Error, Fatal

EVENT_TIME Start of the event

LOCATION Location of the event

MESSAGE A brief overview of the event

condition

RAS LOG FIELDS

1371890
CARD_0411

CARD

PALOMINO_S

DetectedClockCardErrors

FATAL

2008-04-14-15.08.12.285234
R-04-M0-S

An error was detected by Clock
Card: Error=Loss of Reference
input

TABLE II.

; Computer: Blue Gene/P

i Installation: Intrepid - Argonne National Laboratory

Header

JOB LOG FIELDS

Narayan Desai

). Susan Coghlan

; Information: http: alef.anl.

/
; Conversion: Wei Tang (wtang6@iit.edu) Feb 16, 2010

; MaxJobs: 68936
; MaxRecords: 68936
; Preemption: No
; UnixStartTime: 1231135224
; TimeZoneString: America/Chicago
; StartTime: Mon Jan 5 00:00:24 GMT-6 2009
; EndTime: Tue Sep 1 23:42:06 GMT-6 2009
; MaxNodes: 40960
; MaxProcs: 163840
Job Submit

Wait Runnin # Aloc

LogFields # Time Time gTime Processors NA NA Procs time A NA User ID A NA Num NA NA NA
1 0 6680 7560 2048 -1 -1 2048 10800 -1 -1 1 -1 -1 1 -1 = =
2 7 14297 7568 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
3 1590 17322 7561 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
4 2205 61 14972 8192 -1 -1 8192 21600 1 -1 2 -1 -1 2 -1 -1 -1
5 2566 17357 7571 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
6 2751 36 3653 256 -1 -1 64 3600 1 -1 3 -1 -1 3 -1 -1 -1
7 5485 12162 6147 65536 -1 -1 16384 10800 -1 -1 4 -1 -1 4 -1 -1 -1
8 6553 39 2733 256 -1 -1 64 3600 1/ -1 3 -1 -1 3 -1 -1 -1
9 10355 48 565 256 -1 -1 64 3600 1 -1 3 -1 -1 3 -1 -1 -1
10 14158 50 911 256 -1 -1 64 3600 1 -1 3 -1 -1 3 -1 -1 -1
11 14313 6693 7556 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
12 21941 54508 7577 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
13 26546 51863 7590 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
14 27521 50898 7580 2048 -1 -1 2048 10800 1 -1 1 -1 -1 1 -1 -1 -1
15 28617 49817 7566 2048 -1 -1 2048 10800 T = 1 =1 =1 1 =1 =1 =1

ge.php

Req Req running

v), ANL

Queue

II. DATA SETS

Two data sets in the public domain are explored to
determine the feasibility of systems prognostics of large
compute systems. Section A describes a Web services data set,
and Section B a system log data set.

A. Web services data set

The web services dataset Error! Reference source not
found.-Error! Reference source not found. consists of
various Quality of Web Service (QWS) measurements on 2507
real web service implementations. The services were collected
using a crawler engine with the QWS measurements conducted
in March 2008 using a web service broker framework. The
QoS attributes covered in the study for each service included

utilized to generate four service classifications based on the
overall quality rating. In our study, these attributes are used in
an unsupervised learning approach using k-means clustering to
group different services in different cases.

B. BlueGeneP RAS Log from ANL

Recent thrust on high performance computing (HPC)
environment to provide cloud services has led to numerous
studies on failure analysis. In order to maintain and monitor
HPCs, typically service logs are generated to indicate the health
of the system and its components. Some literature already
exists which analyzes the service logs to characterize errors,
provide root cause analysis and predict failures [10-16].

The data set used for this study is based on the IBM Blue
Gene/P system at Argonne National Labs. It consists of a 273-

Response time, A.V ailability, Throughp ut, Successability, day RAS and Job log collected in the ANL system. The logs
Reliability, . Compliance, Best Practices, Latency and and associated information are also available for download
Documentation. from [17] and [18]. More details about the HPC system and the
log data used for the analysis can be found in [10]. Here we

TABLETIl. PARAMETERS AND UNITS OF THE WEB SERVICES DATASET OF summarize the main attributes of the data se.

AL-MASRI AND MAHMOOUD (2008).
_ i RAS Log: The Reliability, Availability and Serviceability
b Farameter Description Units Logs on Blue Gene/P are collected using the Core Monitoring
and Control Systems (CMCS) which monitors compute nodes,
! Response Time Time taken to send a request and receive a response " I/O nodes and various other network components. The
2 Availability No. of successful invocations/total invocations % collected fields in the RAS logs are given in the Table L. In this
3 Throughput Total number of invocations for a given period of time Invokes/sce work we consider the SEVERITY field and in particular where
4 Successability Number of responses / number of request messages % the SeVerity is denoted as FATAL. A fatal event usually
5 Reliability R G R R O G R o (] % denotes a failure of a critical component which leads to an
messages application crash, a hardware crash or severe loss of a service.
6 Compliance The extent to which a WSDL document follows % Using the log entries preceding a fatal error, we study whether
WSPL specification the fatal errors can be predicted.
7 Best Practices The extent to which a web service follows WS-I Basic %

LAzl Job Log: We also consider the Job Log or the records of
8 Latency Time taken for the server to process a given request ms jobs scheduled on the HPC by the scheduler Cobalt Note:
9 Documentation Measure of documentation (i.c. description tags) in % (http://trac.mcs.anl.gov/projects/cobalt/). An example of the

Table III shows the QoS attributes of the web services
dataset along with their description and the units of
measurement. The original study also consisted of calculating a
web services relevancy function using a weighted sum of
normalized attribute values. This function was subsequently

Job log is given in the Table II. While the RAS logs provides
the notable events occurring in the HPC cluster, the job log
provides application level information to further delve into the
root cause analysis of a particular problem. The job log may
also help differentiate between software and hardware failures
by localizing a fault to a particular application since the RAS
logs typically provide only system level messages. A joint

TABLE IV. TYPICAL LINES IN THE RAS LOGS

RECID MSG_ID COMPONENT SUBCOMPONENT ERRCODE SEVERITYEVENT_TIME FLAGS PROCESSOR NODE BLOCK LOCATIONSERIALNUMBER
ECID MESSAGE

26123930 KERN_0802 KERNEL _bgp_unit_ddr _bgp_err_ddr_single_symbol_error WARN 2009-01-05-00.02.51.162211 - O - ANL-R46-M0-512 R46-
MO-NO01-J33 3575YL12M80156ZH x'02405004902DA518080377D308AE" ECC- correctablesingle symbol error: DDR Controller O, failing SDRAM address
0x00466e2a0, BPC pin ER118, transfer 0, bit 157, BPC module pin LO4, compute trace MEMORYODATA157, DRAM chip U0O1, DRAM pin D9.

26123943 KERN_0804 KERNEL _bgp_unit_ddr _bgp_err_ddr_chipkill_error WARN 2009-01-05-00.06.44.106651 - O - ANL-R20-R37-16384 R21-MO-
N10-JO5 44V3572YL12K73050CT x'02407D34C1045713100B674608A2' ECC-correctable chipkill error: DDR Controller 1, failing SDRAM address
0x03afb4180, chipkill location 0008, either X8 compute DRAM chip U15 or U34.

26123976 KERN_0804 KERNEL _bgp_unit_ddr _bgp_err_ddr_chipkill_error WARN 2009-01-05-00.19.36.103137 - O - ANL-R20-R37-16384 R20-
M1-NO6-J14 4V3575YL12K731304S x'024028601C69180A0A1047D346AD' ECC-correctable chipkill error: DDR Controller O, failing SDRAM address
0x035770da0, chipkill location 0x020, either X8 compute DRAM chip U0O2 or UO7.

26123987 KERN_0804 KERNEL _bgp_unit_ddr_bgp_err_ddr_chipkill_error WARN 2009-01-05-00.22.30.905278 - O - ANL-R20-R37-16384 R20-MO-
NOO-J15

44V3575YL12K731305H x'024028601B89780A0F085796C8A8' ECC-correctable chipkill error: DDR Controller 1, failing SDRAM address 0x01573c580,
chipkill location 0x010, either X8 compute DRAM chip U32 or U18.

26124008 KERN_O80A KERNEL _bgp_unit_ddr _bgp_err_ddr_SSE_count WARN 2009-01-05-00.35.53.068598 - O - ANL-RO2-R03-2048 RO3-M1-N15-
JO4 44V3575YL12M7270WJD x'02402C600839D80FOCOES76748A4' DDR controller O, chipselect O single symbol error count 9

26124021 KERN_O80A KERNEL _bgp_unit_ddr _bgp_err_ddr_SSE_count WARN 2009-01-05-00.41.28.753741 - O - ANL-R45-M0-512 R45-MO-NO09-
J13 44V3575YL12M7346J9N x'024050048F70F5180F0667848AA5' DDR controller O, chipselect O single symbol error count 48222

TABLE V. DIFFERENT KEYWORDS WITH INDEXES EXTRACTED FROM PARSED LOG ENTRIES.
44 Distinct ERRORCODES 44 distinct 195 Types of 16 types of
b _bop_err_ddr_single_symbol_error MSGIDs BLOCKS SUBCOMPONENT
. _bgp_err_ddr_chipkill_error 1 KERN_0802 1. ANL-R46-M0-512 1. _bgp_unit_ddr
5. _bgp_err_ddr_SSE_count 2 KERN_0804 2. ANL-R20-R37-16384 2. _bgp_unit_I3
L. _bgp_err_ddr_DSE_count 3. KERN_OSOA 3. ANL-R02-R03-2048 3. _bgp_unit_cns > Types of
. _bgp_err_I3_correctable 4 KERN_O80B 4. ANL-R45-MO-512 4. _bgp_unit_dma SEVERITY
. _bgp_err_ddr_double_symbol_error 5. KERN_0707 5. ANL-R10-R17-8192 5. _bgp_unit_ciod
- _bgp_err_ddr_ = — - 6. _b unit_ppc450
L bap err ddr CK count 6. KERN_O0803 6. ANL-R42-R43-2048 _bgp_unit_pp
 —PIP_STTddr_Cr 7. KERN_O80C 7. ANL-R47-MO-512 7. _bgp_unit_torus 1. WARN
B. _bgp_err_ddr_rbs_activated 8 KERN_OSOQ 8. ANL-R45-M1-512 8. _bgp_unit_envmon 2 ERROR
b. _bgp_err_cns_ras_compression_flush 9. KERN_1027 9. _DIAGS_R45-MO 9. _bgp_unit_collective -
li0. _bgp_err_dma_rec_fifo_not_avail 10. KERN_0102 10. _DIAGS_RO0O-M1’ 10. 'bg_subcomp_e10000 3. FATAL
" 4. INFO
cee eee 5. error

analysis of both RAS and Job logs similar to [10] is planned for
the future. In this study we look at them individually.

III. ALGORITHMS

A. Unsupervised Learning of Web Services Logs

The original study of Al-Masri et. al [19, 20] treated the
web services dataset in a supervised machine learning setting
by the virtue of ranking (and hence, instance labels) generated
using the relevancy function. In contrast, we treat the data
independent of labels. The main reason for not employing the
relevancy function is because it was not availability with the
data set. The relevancy function, involved a weighted sum of
normalized attribute values. The weights in this case
correspond to the relative importance of the QoS attributes in
the final QoS scoring as determined by the user. While an
importance ranking of attributes can be obtained based on the
priority of the users, we cannot compute and confirm their
relative weights without additional information. As a result, we
aim to discover if the data reveals a “natural groupings”
allowing us to categorize the web services for further analysis.
In practice such an approach may be more suited to a wider
array of service classifications since it is completely data
driven and unsupervised.

To categorize services into different classes, we study the
histogram profiles of selected attributes to investigate the
attribute value landscape across the web services. Since the
scales of the captured QoS attributes are not directly
comparable, we normalize the attribute values in [0,1] interval.
We then employ principal component analysis (PCA) [22] to

obtain the three major directions of variance for visualization
purposes. PCA involves an orthogonal transformation of data
by eigenvalue decomposition so that the resulting data
dimensions are linearly uncorrelated. These dimensions, known
as principal components, are obtained such that they are
arranged in decreasing order of their variance. We use the top
three dimensions (variables) with the highest variance to
visually explore the data.

In order to discover the natural groupings of data instances
in the original attribute space, we map the problem to an
unsupervised machine learning problem. The motivation was to
validate if the data clusters in the original space allowing us to
group services by their “similarity” (as defined by the
similarity metric used by the clustering method). To this end,
we employ a k-means clustering algorithm [22] to perform data
clustering in the original 9-dimensional data space. A k-means
clustering algorithm is aimed to divide the dataset into k
groups. The group that each data instance belongs to is
determined as the one with the closest mean. While
determining the best k, and hence the optimal number of
groups to fit the data, is non-trivial, we chose k=4 so as to be
consistent with the groupings obtained in the original study in
four service classification using the relevancy function.

Note that we do not currently perform clustering on PCA
transformed data. Given that PCA has a symbiotic relationship
with k-means clustering method, the next step would be to
cluster data on PCA transformed space. We use the PCA and k-
means clustering algorithm implementations available as a part
of the scikit learn library for Python [23].

TABLE VI RAS LOGS WITH KEYWORDS INDEXED

MsG COMPO SUBCOMP ERR EVENT

RECID ID NEN ONENT CODE SEVERITY TIME FLAGS NODE BLOCK LOCATION
1 0 1 1 1 1 1 733778 - o - 1 1
2 o 2 1 1 2 1 733778 - o - 2 2
3 o 2 1 1 2 1 733778 e o = 2 ES
4 0o 2 1 1 2 1 733778 - o = 2 4
5 o 3 1 1 3 1 733778 o = 3 5]
6 o 3 1 1 = 1 733778 - o 4 6
7 o 3 1 1 = 1 733778 — o X 4 7
8 0 4 1 1 4 1 733778 e o = 4 6
9 0 1 1 1 1 1 733778 - o - 4 6
10 O 5 1 2 5 1 733778 - o - 5 8

*44V3575YL12M80156ZH"

*44V3572YL12K73050CT

'44V3575YL12K731304S

*44V3575YL12K731305H"

‘44V3575YL12M7270WJID

*44V3575YL12M7346J9N

‘44V3575YL12M7345)1M°

‘44V3575YL12M7346J9N

*44V3575YL12M7346J9N

*44V3572YL12K80031JY"

LocAaTiON

‘ECC.
%"02405004902DA518 corr ectab
080377D308AE™ le’

‘ECC-
%"02407D34C1045713 correctab
100B674608A2" le:

%"024028601C69180Acorrectab
0A1047D346AD™ le’

*ECC-
x"024028601B89780Acorrectab
OF085796C8A8™ le'
%"02402C600839D8OF
OCOE576748A4™ ‘DDR’

'%"024050048F70F518
OF0667848AA5™ ‘DDR’

'%"02407D34C0101713
0D086871C8BB™ ‘DDR’

'X"024050048F70F518
OF0667848AA5™ 'DDR’

*ECC-
%"024050048F70F518 correctab
OF0667848AA5™ le

'%"024004700911380F

OFOB4757C8A1™ L3

'single’

‘chipkill’

‘chipkill’

*chipkill’

‘(Ohtrolle
‘controlle
'cont:olle

'conlrolle
=

‘single’

‘Correcta
ble’

*symbol’

‘error:'
‘error:'
‘error:’

0,

(e)
e
(¢}

‘symbol*

‘error*

"DDR r
‘chipselec
t ‘o
‘chipselec
t ‘0"
‘chipselec
t ‘0"
‘chipselec
t ‘0"
‘error:' 'DDR'
‘controlle
r=0x0000
‘L3t ooo1*

‘error:’ 'DDR’
‘Controlle

‘DDR* r
‘Controlle

‘DDR’ r

‘Controlle

g W] P 1]
L W I foest LA
MSG_ID “‘[BLOCK
T ‘W i “m Ul Tl I | L
: | m‘ i L j |
b \"‘1““‘1“ r’\ ‘\wu\\“\[‘- “_’\‘ | \‘

' LOCATION - SUBCOMPONENT

Figure 1: Figure showing the sequence of keywords appearing in a block log
entries for different RAS fields along with the histogram of the keyword
frequency in each field.

Job Interarrival Times
10 T T T T T T

Number of Jobs)
3

\

i i I L i I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

S

Interarrival Time (sec)

Figure 3: Figure showing the process interarrival times

B. Predicting FATAL Errors on RAS logs using Support
Vector Machines.

In order to predict fatal errors we consider a list of log
entries preceding it, and use Support Vector Machine [16]
based classifier to decide whether the log entries suggest an
impending fatal error or a normal state (with non-fatal or no
errors) of the system. SVM is a standard supervised learning
technique which has been extensively used for classification
and regression analysis of data. It has proved particularly useful
when the relative utility of different attributes (from a
classification point of view) is not well understood for a
complex system with a high dimensional feature space.

Classification Rate for Different % of Training Data

500 Lines of RAS blocks used for generating Feature Vectors

SVM Kernel: Linear

il

—— SVM Kemel: Radial Basis
—— SVM Kerel: Histogram I

Percentage of Correct Classifications (%)

Percentage of Data for Training (%)

Figure 2: for the figure 345 distinct blocks leading fatal errors and 1000 non-fatal
blocks were sued. The graph shows the classification accuracy with different
fraction of the dataset used in the training period.

4000}

Analysis of IBM BlueGene/P Job logs from ANL
T T T T

2500)

2000

Number of jobs

1500

1000

50|

B 8
Running Time (hrs)

Figure 4: Figure showing histogram of process run time

Before we can employ the SVM based classification, we
need to do some preprocessing of the RAS logs to extract
relevant information from the RAS logs. Table IV shows how
RAS log entries appear as semi-structured text. We parse the
log one line at a time to extract the values of the different fields
SUBCOMPONENT etc.
value of each RAS field a unique code index is generated.
Table V gives examples of unique words or values extracted
for each field along with the index number for each of them.
Finally using the indexes, the RAS log is converted into a
codebook with the actual words associated with each field

such as MSG_ID,

converted to an index entry as shown in Table VI.

For each unique

Histogram of Availability

B Availability

200

150

Frequency
8
3

20 40 60 80 100
Value

Figure 5: Histogram profile of Availability attribute of web services data

Histogram of Successability

Bl Successability

250

200

Frequency

50

20 40 60 80 100
Value

Figure 7: Histogram profile of Successability attribute of web services data

Figure 9: Visualization of PCA tr&i;nsform of web services data (top three
principal components)

Next, we look at the predictability of FATAL errors (i.e.
lines with SEVERITY entry as FATAL) using the log entries
preceding them. We consider a fixed window of log entries
preceding each fatal error. The window may consist of a fixed
number of lines or a fixed time window. In this work we used a
fixed window of 500 lines to describe a block of logs.

Our intuition is that the group of log entries would contain
enough indicator messages which can be used to predict that a
fatal error is imminent. In particular we assume that certain
keywords appearing in the preceding log entries in each field
can be used to predict the fatal error. Thus keywords, denoted
by index entries in the codebook may be used as features to
classify if a preceding block of log entries denote a block
leading to a fatal error or a non-fatal error.

Using the keyword entries in the codebook, we create
feature vectors for different blocks of log entries. Our feature
vectors are simply histogram of keywords appearing in a fixed
length block of log entries. The histograms signify the relative
frequency of certain keywords appearing in the preceding logs
and high frequency of certain keywords (for example a

Histogram of Throughput

BN Throughput

Frequency

5
Value

Figure 6: Histogram profile of Throughput attribute of web services data

Histogram of Response times

BN Response time

Frequency
N
3
3

Prae
0 1000 2000 3000 4000 5000
Value

Figure 8: Histogram profile of Response times of web services

Figure 10: Results of k-means clustering (k=4) of web services data

sequence of non-fatal errors) may signify that a severe or fatal
error is impending.

The Log entry blocks are divided into two classes as Fatal
and Non-Fatal (with any warning which is not a fatal error).
For fatal blocks, we consider all entries with the severity field
equal to Fatal and generate feature vectors with log entries
preceding the fatal event. For the results, a group of 500 log
entries preceding each fatal error were used. For the non-Fatal
entries, we randomly consider an entry in the log whose
severity is not fatal and which does not have a fatal event
within 500 lines of logs before or after it. Thus we get a block
with no fatal entries in it and create feature vectors belonging
to the non-fatal class.

The two feature sets belonging to fatal and non-fatal errors
further are subdivided into training and testing sets. Finally, the
training set is used to train a SVM based binary classifier.
While at this point we are unable to cross-validate the
groupings with some service class ground truth, preliminary
results suggests good separation in the classes. A formal

evaluation of the goodness metrics of the clusters is subject of
future work.

IV. RESULTS

A. Web services dataset

Figures 5-8 present histogram profiles of Availability,
Throughput, Successability and Response time attributes for
the web services data. Figure 9 shows the top three principal
components to illustrate the data distribution along the three
most variable directions.

Figure 10 shows the groupings (clusters) obtained using the
k-means clustering algorithm on the web services data in the
original data space. In order to visualize the groupings, we
superimpose the labels (each color on data point represents a
cluster) on the PCA visualization of the data.

B. SVM based classification of RAS logs

As of date we have processed only a small fraction of the
entire recorded log due to certain data and parsing irregularities
but the initial results are promising. For the results we were
able to extract and analyze 345 distinct fatal errors. For the
non-fatal case we randomly generated 1000 distinct blocks. In
order to evaluate whether we can distinguish the two different
sets using the feature vectors, we divided the data set into
training and testing set. Figure 2 above shows the classification
accuracy for different SVM kernels used. We see that even
with a very small set of training examples; we can predict an
imminent fatal event with extremely high accuracy.

We have also started evaluating the job logs and plotted
some statistics related to processes in Figure 3 and Figure 4. As
described in [10, 11], information such as running time of a job
has strong correlation with the probability of failure. For
example [1] shows that longer jobs (and not larger jobs) are
more susceptible to failures. We believe that addition of such
information available from simultaneous from job logs would
improve the error characterization and predictability. This is
subject of future work.

V. CONCLUSIONS AND NEXT STEPS

The work presents our preliminary investigation on the
problem of predicting Quality of Service and failures in cloud
based architecture supporting critical services such for
healthcare monitoring. We consider a two-pronged approach to
achieve this. First, web service attributes are used for
classification and clustering of services that provide application
level tool and parameters to characterize and predict quality of
service. Second we analyze RAS logs from HPC clusters that
would support the services, and study if failures leading to loss
or degradation of services can be predicted. Our initial results
are promising and suggest a methodology and technique
suitable for this purpose.

This paper presents an initial foray into the analysis of
cloud based critical services and health monitoring. As future
work, we would conduct a complete system level analysis
involving application level monitors, end-to-end service quality
attributes and system level hardware and software monitors to

accurately predict service quality in cloud based critical
services architecture

REFERENCES

[11 G. Vachtsevanos, F. L. Lewis, M. Roemer, A. Hess and B. Wu,
Intelligent Fault Diagnosis and Prognosis for Engineering Systems, John
Wiley & Sons, Inc., 2006.

[2] M. Schwabacher (2005), "A Survey of Data-Driven Prognostics",
Proceedings of the AIAA Infotech@Aerospace Conference, Arlington,
Virginia, September 26-29, 2005.

[3] M. Schwabacher and K. Goebel (2007), "A Survey of Artificial
Intelligence for Prognostics", Proceedings of the AAAI Fall Symposium,
Arlington, Virginia, 2007.

[4] J. B. Coble and J. W. Hines (2008), "Prognostic Algorithm
Categorization with PHM Challenge Application", Proceedings of the
2008 International Conference on Prognostics and Health Management,
October 6-9, 2008.

[5] A.B. Chandola and V. Kumar (2009), "Anomaly Detection: A Survey",
ACM Computing Surveys, Vol. 43, No. 3, 2009.

«

[6] Urmanov, A. and Bougaev, A., Prognostics in Data Centers,”
http://www.stanford.edu/class/ee392m/Lecture7Urmanov.pdf

[71 Urmanov, “Electronic Prognostics for Computer Servers,” Reliability
and Maintainability Symposium, 2007. RAMS '07, 22-25 Jan. 2007

[8] Bougaev, Urmanov, “ R-functions Based Classification for Abnormal
SoftwareProcess Detection,” Lecture Notes in Computer Science,
Volume 3801/2005, Computational Intelligence and Security, Springer
Berlin / Heidelberg

[91 Garvey, Dustin; Evans, Scott; Iyer, Naresh; Varma, Anil; Yan,
Weizhong; Bouqata, Bouchra, “Iscale, and Introduction,” GRC
Technical report 2012GRC608

[10] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan, D.
Buettner, Co-analysis of RAS Log and Job Log on Blue Gene/P,
International Parallel & Distributed Processing Symposium (IPDPS),
2011

[11] Y. Liang , Y. Zhang , M. Jette , A. Sivasubramaniam , R. Sahoo,
BlueGene/L Failure Analysis and Prediction Models, International
Conference on Dependable Systems and Networks, 06

[12] Mengliao Wang, Xiaoyu Shi, Ken Wong, , Learning Configuration Files
for Automatic Fault Diagnosis, International Conference on Program
Comprehension (ICPC), 2011

[13] Wei Zhou, Jianfeng Zhan, Dan Meng: Multidimensional Analysis of
System Logs in Large-scale Cluster Systems. CoRR
abs/0906.1328 (2009)

[14] Z. Lan, Y. Li, P. Gujrati, Z. Zheng, R. Thakur, and J. White, "A Fault
Diagnosis and Prognosis Service for TeraGrid Clusters", Proc. of
TeraGrid'07 , 2007.

[15] Resource management on Cloud systems with Machine Learning ,
Master’s Thesis, Zhenyu Fang, Technical University of Catalonia

[16] Cortes, Corinna; and Vapnik, Vladimir N.; "Support-Vector Networks",
Machine Learning, 20, 1995.

[17] Parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload

[18] Usenix Computer Failure Data Repository, http:/cfdr.usenix.org

[19] E. Al-Masri, and Q. H. Mahmoud, “QoS-based Discovery and Ranking

of Web Services”, IEEE 16™ International Conference on Computer
Communications and Networks (ICCCN), 529-534, 2007.

[20] E. Al-Masri, and Q. H. Mahmoud, “Investigating Web Services on the
World Wide Web”, 17" International Conference on World Wide Web
(WWW), 795-804, 2008.

[21] QWS Data URL: http://www.uoguelph.ca/~qmahmoud/qws/index.htm

[22] Bishop, C. M., Pattern Recognition and Machine Learning, Springer,
2006

[23] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12,
pp. 2825-2830, 2011

