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Abstract

This thesis studies the generalization behavior of algorithms in Sample Compression Settings.

It extends the study of the Sample Compression framework to derive data-dependent bounds

that give tighter guarantees to the algorithms where data-independent bounds such as the VC

bounds are not applicable. It also studies the interplay between sparsity and the separating

margin of the classifier and shows how new compression based data-dependent bounds can

be obtained that can exploit these two quantities explicitly. These bounds not only provide

tight generalization guarantees but by themselves present optimization problems for learning

leading to novel learning algorithms.

This thesis studies the algorithms based on learning conjunctions or disjunctions of data-

dependent boolean features. With the Set Covering Machine (SCM) as its basis, the thesis

shows how novel learning algorithms can be designed in compression settings that can per-

form a non-trivial margin-sparsity trade-off to yield better classifiers. Moreover, the thesis

also shows how feature-selection can be integrated with the learning process in these settings

yielding algorithms that not only perform successful feature selection but also have provable

theoretical guarantees.

In particular, the thesis proposes two novel learning algorithms. The first algorithm is

for the SCM with data-dependent half-spaces along with a tight compression bound that can

successfully perform model selection. The second algorithm aims at learning conjunctions

of features called data-dependent Rays to classify gene expression data from DNA micro-

arrays. The thesis shows how a PAC-Bayes approach to learning Rays’ conjunctions can

perform a non-trivial margin-sparsity trade-off to achieve classifiers that not only have prov-

able theoretical guarantees but also utilize a significantly small number of attributes unlike

traditional feature selection algorithms.

This thesis also proposes two new formulations for the classical SCM algorithm with

data-dependent balls aimed at performing margin-sparsity trade-off by utilizing Occam’s

Razor and PAC-Bayes principles respectively. The thesis shows how such approaches yield

more general classifiers with tight risk bounds that can potentially guide the model selection

process.
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CHAPTER 1

Introduction

Recent developments in machine learning have made it possible to obtain insights from vast

amounts of data. This has resulted in algorithms that can learn and generalize well across a

wide spectrum of tasks such as face recognition, speech and handwriting recognition, games,

medical diagnosis and prognosis and machine translation. One of the main areas of research

in machine learning has been the problem of classification where an algorithm is expected

to learn so as to be able to distinguish between instances of two (or more) classes.

Learning approaches vary in the learning biases that they exploit to achieve good gen-

eralization capabilities. With respect to the classification problem, linear classifiers have

emerged as important learning algorithms. These have become quite popular because of the

ease of analysis and implementation. The Support Vector Machine (SVM) has appeared

as one of the most prominent result from this line of research. The SVM was originally

proposed by Boser, Guyon and Vapnik (1992). An SVM relies on obtaining a separating

hyperplane (a linear classifier) in the feature space and it has been shown that one can expect

this classifier to generalize well when the separating margin around the decision boundary

of this hyperplane is maximized. However, other approaches have also been developed in

parallel that focus on alternative biases for learning. One such approach has appeared in

the form of algorithms aiming to represent the hypothesis (classifier) in terms of minimum

possible number of training examples. The algorithms utilizing this bias of relying on a

substantially small subset of training examples to represent the hypothesis and being able

to reconstruct this hypothesis with the help of just these examples fall under the category

of Sample Compression based algorithms. Although the notion of Sample Compression is

quite old (Littlestone and Warmuth, 1986), recent developments in the field have resulted

in promising algorithms that are more general and have a wider domain of application. The

basic idea behind the Sample compression algorithms is to obtain learning algorithms with

the property that the generated classifier (with respect to some training data) can often be

reconstructed with a very small subset of training examples. Such classifiers are typically

called sparse classifiers.

In a sense an SVM can be considered as sample compression algorithm: The decision

1
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boundary of the SVM is represented in the form of an additive model. That is, if h is the

decision function output by the SVM, then the output of h on some example x is given

as: h(x) =
∑

i=1,...,m;xi∈S αik(x, xi) where k(., .) is known as the kernel function and m the

number of examples in the training set. The solution hyperplane is expected to have only

a few non-zero αi’s. Hence, the solution hyperplane is essentially represented in terms of a

few training examples. Moreover, running the same learning algorithm only on this subset

of training examples for which the αi 6= 0 (instead of the whole training set) will still output

the same hyperplane decision boundary.

However, the inherent limitation of this approach in exploiting the sparsity of the solution

comes from the fact that the optimization for obtaining the final hyperplane is based entirely

on maximizing the separating margin around it. Some attempts have been made to obtain

sparse classifiers from SVM. For instance Bennett (1999) and Bi et. al. (2003) propose to

minimize an `1-norm functional (instead of the traditional `2-norm) and have found that,

indeed, the sparser SVM sometimes had better generalization. Therefore, from this SVM

perspective, we should consider algorithms that minimizes an `β-norm functional for any

β ∈ [0, 2]. In the β = 2 limit, we obtain the SVM with the largest possible separating

margin (without considering its sparsity). In the β = 0 limit, we would obtain the sparsest

SVM (without considering the magnitude of its separating margin). This parameter β would

then control the margin-sparsity trade-off of the final classifier.

On the other hand, algorithms have been proposed that focus solely on the sparsity of

solution and also have practical guarantees on the future performance. For instance, con-

sider an initial approach in the form of the Standard monomial learning algorithm proposed

by Valiant (1984) that aimed at learning a small conjunction or disjunction of monomials.

Haussler (1988) further reduced it to the minimum set cover problem and proposed a greedy

heuristic for this algorithm with a provably good worst case lower bound on the number of

monomials required (Chvátal, 1979). However, not until recently, was this approach gener-

alized for practical learning tasks when Marchand and Shawe-Taylor (2001, 2002) proposed

the Set Covering Machine learning algorithm that builds data-dependent boolean features

on data and then learns a (preferably) small conjunction or disjunction of these features to

obtain a classifier. This approach used data-dependent balls as features and showed good

preliminary results. There was one more striking feature of this approach: pragmatic risk

bounds. The generalization bounds that can be obtained over the future performance of the

classifier are not only considerably tight but are also practical enough to enable the learning



1.1. Contributions 3

algorithm to perform model selection1.

The motivation for this thesis comes from the above initial results. The encouraging

results obtained by the simple bias that the SCM utilizes certainly warranted further re-

search to investigate the possibility of extending this framework. This thesis aims at ex-

amining whether extending this bias of learning conjunctions or disjunctions of (possibly

data-dependent) features can lead to better classifiers with provable guarantees. This thesis

also examines the role of the margin of the decision surface of the classifier and its affect on

the algorithm’s compression abilities.

To summarize, the primary aim of this thesis is:

Investigating the generality of the sample compression algorithms by extending the SCM

framework and studying the interplay between the margin of the decision surface and spar-

sity of the solution (and consequently a possible trade-off between the two) so as to obtain

classifiers with better performance and guarantees.

We adopt the basic set covering machine framework as the basis for our learning algo-

rithms. The primary reason for adopting SCM as basis is that it is an elegant generalization

of algorithm for learning conjunctions or disjunctions of boolean features. Moreover, the

SCM framework is modular, robust2 and stable3. Consequently, our approaches automati-

cally inherit these properties.

1.1 Contributions

In the light of the above discussion, the main contributions of this thesis can be seen under

the following broad categories.

i. Novel learning algorithms that utilize the bias of learning conjunctions or disjunc-

tions of data-dependent features. In this respect, we propose:

(a) Two new sample compression based learning algorithms.

The first is a learning algorithm for Set Covering Machines with data-dependent

Half-Spaces. This algorithm not only demonstrates the generality of the approach

by showing that the basic SCM algorithm is not limited to a certain set of features,

but also shows that indeed alternate feature sets might be required in certain sce-

1Model selection refers to choosing the best classifier from among the potential ones. We discuss model

selection in Chapter 2.
2Robustness refers to the ability of handle noisy data.
3Stability refers to reliable performance on unseen examples both empirically and theoretically.
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narios for better performance. Half-spaces are one such set of features that in

general yield sparser classifiers. The second novel learning algorithm that we

propose comes in the form of learning conjunctions of linear threshold features

called Rays built on individual attributes (unlike the features built on examples

in traditional SCM). Exploiting sparsity in terms of features, as opposed to ex-

amples, in this case gives us a feature selection algorithms with quite competitive

practical performance as well as, and probably more importantly, provable theo-

retical guarantees. We present an application of this feature selection algorithm

to the gene expression data obtained from DNA microarrays to which probably

the approach is probably best suited.

(b) Two alternate formulations for the SCM algorithm.

These resulted from our attempts to exploit the margin of the decision boundary

in addition to the sparsity to obtain better classifiers. Two approaches, one moti-

vated from the Occam’s Razor principle and another based on the PAC-Bayesian

principle appeared as a result.

ii. Tight Generalization bounds: The motivation behind our algorithms came from

the ability to obtain tight and practical risk bounds. The most important results

coming from this research are in the form of generalization error bounds that explicitly

depend on both the sparsity of a classifier and the magnitude of its separating margin.

We show how both sparsity and margin can be considered as different forms of data

compression and exploited by performing a trade-off to yield more general classifiers

(see Chapter 7, 8 and 9 in particular).

1.2 Thesis Organization

The rest of this thesis is organized as below4:

Chapter 2 provides an overview of machine learning.

Chapter 3 provides an introduction to the Statistical Learning Theory that forms the

theoretical basis of various machine learning approaches. We study this formal framework

in three parts viz. main algorithmic approaches, mathematical learning models and general-

ization risk bounds. Note that we focus on uniform risk bounds that provide guarantees on

the generalization performance of the classifier in terms of studying the uniform convergence

4For the readers who have sufficient background, the thesis is organized in such a way that each chapter

can be read in isolation.
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of the empirical risk to true risk of all the classifiers. The various bounds presented in this

chapter form the basis of the bounds that we present in subsequent chapters.

Chapter 4 gives a brief description of the general Set Covering Machine algorithm

of Marchand and Shawe-Taylor (2001). We also give a formal outline of the algorithm that

we will be referring to in further chapters. Along with this we describe the set of features

called data-dependent balls introduced by Marchand and Shawe-Taylor (2001) and derive a

tight sample compression bound for SCM with balls.

Chapter 5 presents our first result in the form of a new learning algorithm for Set

Covering Machines with data-dependent Half-Spaces along with a sample compression bound

over its generalization performance. We show empirically that exploiting alternate sets

of features is not only possible but also necessary for better performance in some cases.

Moreover, the proposed bound performs model selection successfully.

Chapter 6 proposes algorithms for learning conjunctions (or disjunctions) of simple

threshold features called Rays based on Sample Compression and Occam principles. These

algorithms implicitly aim at performing feature selection to find a minimum number of Rays

to classify gene expression data. However, the inherent property of the algorithms to focus on

sparse solutions have a limiting effect as we discuss there. This limitation is addressed with

a new learning algorithm based on PAC-Bayes settings that allows us to trade-off sparsity to

some extent in favor of large separating margins. We present this approach in Chapter 7

along with a PAC-Bayes risk bound.

Chapter 7 also forms the groundwork and motivation for a margin-sparsity based study of

the SCM framework. Consequently, the chapters that follow present two alternate learning

algorithms for the SCM that perform a non-trivial margin-sparsity trade-off.

Chapter 8 proposes an alternative algorithm for the set covering machine that uses a

code for message strings to represent the radii of data-dependent balls. The algorithm trades

off sparsity in favor of a short code for the radii. We also present a tight risk bound and

show that it can successfully perform model selection.

In Chapter 9 we propose a PAC-Bayes approach to the set covering machine in an

effort to address a limitation of previous approach, that of, choosing an a priori scale over

the radii of data-dependent balls. This algorithm is also, as before, accompanied with a tight

risk bound.

Finally, Chapter 10 summarizes the main results of our work and provides an insight

to future directions resulting from it.



CHAPTER 2

Machine Learning Overview

This Chapter presents a brief overview of Machine Learning concepts such as the notion of learning

(esp. inductive inference) and the corresponding issues, types of learning problems and empirical

evaluation methods along with their use in model selection.

2.1 Introduction

One of the most interesting, exciting and challenging avenues since the advent of the com-

puter has been the notion of learning. It has always interested mankind whether computers

can be put to tasks that require them to improve their performance with increasing experi-

ence. The efforts in this direction have opened up many a new avenues of research. Some

of the initial formalizations of the definition of learning have been observed in the following

form:

Definition 1. (Simon, 1983) Learning corresponds to the changes in system that...enables

[it] to do the same task or tasks drawn from the same population more efficiently and more

effectively the next time.

Note that learning should not be confused with memorizing or adaptation. Memorizing

corresponds to the ability of merely remembering and recalling the output (or a course of

action) when a similar instance or task arrives. Adaptation refers to a temporary change in

condition that can be altered in the event of future changes. On the other hand, learning

has the ability to generalize. That is, learning can look beyond the available scenarios by

exploiting the regularities in the present situations. Hence, in a sense, learning signifies

intelligence. The existence of regularities in many a natural domains make learning feasible.

Learning, hence is a very wide notion. Efforts to automate learning have largely focussed

on automating the process of Inductive inference. Inductive inference basically refers to

observing a phenomenon and generalizing over it. Essentially, this is done by modeling this

phenomenon and then using this model to make predictions over future phenomena.

Machine Learning aims at the practical aspects of automating this process of inductive

inference. That is, here we refer the computer program as the learning entity. However,

6
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alongside has evolved a parallel stream known as Statistical Learning Theory (also known

as Computational Learning Theory). Statistical Learning Theory attempts to formalize this

process so as to provide a theoretical framework for Machine learning algorithms. In this

chapter, we will discuss in detail, the notion and the essential aspects and components of the

Machine learning framework and the types of problems that it addresses. The next chapter

provides an introduction to the Statistical Learning Theory.

Mitchell (1997) gives the following definition of Machine-Learning:

Definition 2. (Mitchell, 1997) A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E.

In fact T can be thought of as a distribution over the space of possible tasks so that

with increasing experience, on any future task drawn independently according to T , the

performance evaluated according to P improves.

This improvement in the system can be brought up either by providing the system with

additional information and skills or by helping the system to adapt its behavior according to

the existing task. The mode in which the improvement is made helps address varying kinds

of learning problems, for instance, the classification problem where the learning system

learns from more and more examples (i.e. improvement is made by providing additional

information) and the regression problem where the task is to find a functional that fits the

given data (i.e. adapt to the existing task). We will see the broad classes of learning problems

further in the chapter.

As can be seen in the definition above, we need to define and formalize three quantities

for any system:

1. the learning task T ; the ultimate problem on which we expect the system to perform

well.

2. a performance measure P on T ; method of evaluating how well the system performs

on the task.

3. the mode of experience E; the formalization which would be used to provide the

additional information or skills to the system so as to enable it to gain experience and

hence improve from it.

These three quantities vary according to the problem and domain of application giving

rise to various models of learning. For instance, the additional information can be provided
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to the learner in the form of vectors leading to: supervised learning when the vectors are

labeled with the output category and unsupervised learning otherwise. The availability of

the labels for input examples also dictates the goals of these two learning methods. The first

aims to obtain a model that can provide an output based on the observed inputs. The latter

on the other hand tries to model the inputs themselves. Providing additional information

in terms of examples is probably the most widely practised methodology. However, other

approaches exist such as providing additional information via relations, constraints, functions

and even models. Moreover, there have recently been attempts to learn from examples with

and without labels together, an approach largely known as semi-supervised learning (see Zhu

(2005) for a survey).

The manner in which the additional information is provided also plays an important role

in learning giving rise to two main models of learning: Active learning, where an algorithm

tries to learn using a minimal number of labeled examples, and; Passive learning, where an

algorithm is given a fixed set of examples. It should be noted that Active learning is different

from Online learning where a master algorithm uses the prediction of competing hypotheses

to predict the label of a new example and then learns from its actual label.

2.2 Why is Learning Difficult?

It is obvious that learning systems can be instrumental in our understanding of many com-

plex phenomena, discovery of knowledge, information and patterns in databases as well as

developing systems that can not only understand a domain but also adapt themselves so as

to perform better in the future. However, such learning is not always easy since a system is

expected to generalize its limited experience from finite amount of data to an (often) infinite

domain. There can be more than one possible generalization. The criterion used to favor one

generalization over another is called the bias of the learning algorithm. See work of Gordon

and Desjardins (1995) for more details on learning biases.

A simple example can give an idea of the level of difficulty of the learning problem and

some of the issues involved in learning. Consider the problem of fitting a functional to a set

of data points in 2-dimensional plane, known as the regression problem (that most closely

approximates the data point and can also generalize well in the future) as shown in figure

2.1.

There are always two extremes. The first is a curve that passes through each and every

given point (the blue curve in the figure) and the second is a line that approximates the
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Figure 2.1: A simple regression problem

data closely (the black line in the figure). The first extreme is the most specific extreme

while the second can be considered to be the most general one. In between these two

extremes, there are infinite possibilities (e.g. the red curve in the figure) and several issues

to consider. For instance, the choice of the first option, fitting a curve passing through every

data point, might often lead to what is called overfitting (making the solution too specific

to generalize well in the future). On the other hand, the other extreme, approximation of a

line, might be a misleading approximation if the data is sparse. Many such issues exist and

efforts have been made to address them. For instance, the issue of overfitting is generally

addressed using approaches such as Pruning or Boosting. Pruning is defined as generalizing

the final solution by removing some very specific information, for example, by removing

nodes in the case of decision trees. Boosting, on the other hand, aims at finding some

general rules of thumb instead of a very accurate approximation of the data and use these

rules repeatedly. The underlying idea is to combine “weak” learners1 to form an ensemble so

that the performance of a single member is improved. Approaches such as Regularization and

Bayesian formulations have also shown promise in tackling this problem. We discuss these

approaches in the next Chapter. In case of sparse datasets we use some kind of smoothing

or back-off strategy. We do not discuss these issues in detail here. However, we make our

point about the difficulty of the learning problem. For details on these issues, please refer

to the pointers in Section 2.6.

A learning framework has many components such as the instance space, hypothesis (an

estimate of the function to be learned), hypothesis space, performance methods, learning

algorithm and learning bias. Different approaches to the representation, organization and

1that performs slightly better than random guessing
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extensions to these components have lead to various types of learning. Some of the promi-

nent types of learning include Decision Tree Learning, Artificial Neural Networks, Bayesian

Learning, Instance/Case based learning, Genetic Algorithms, Rule Induction, Analytical

learning and Reinforcement learning. For details on these approaches please refer to the

literature cited in Section 2.6.

Throughout this work, we will be referring to Supervised learning from examples with

two possible classes, i.e. the binary classification framework. Moreover, we will focus on

investigating the Sample Compression based algorithms. This class of algorithms includes

the ones that use a (preferably small) subset of training examples to represent the hypothesis.

We describe this framework in Section 3.7. In particular, our approaches assumes as its basis

the Set Covering Machine algorithm proposed by Marchand and Shawe-Taylor (2001, 2002).

We describe the basic Set Covering Machine (SCM) algorithm in Chapter 4.

2.3 Formalization of a Learning Problem

Let us now formalize the general settings of a learning problem. The general model of

learning can be described using the following three components:

1. An instance space X from which random vectors x ∈ Rn can be drawn independently

according to some fixed but unknown distribution.

2. A label y ∈ Y for every vector x according to some fixed but unknown conditional

distribution.

3. A learning algorithm A that can implement a set of functions f from some function

class F over the instance space. Each such function f ∈ F is known as a classifier.

The problem of learning is that of choosing the best classifier from the given set of

functions that can most closely approximate the labels of the vectors. This classifier is

selected based on a training set S of m training examples drawn according to X with their

respective labels. Each tuple of a vector x and its label y can be represented by z = (x, y)

which can be assumed to be drawn independently from a joint distribution D.

The choice of the best classifier is often based on the measure of risk which is nothing

but the degree of disagreement between the label y of a vector x and the one assigned by

the classifier f : X → Y that we denote by f(x). Before defining the risk of a classifier, let

us define the loss function. A loss function is simply a quantitative measure of the loss when

the label y of the vector x is different from the label assigned by the classifier. We denote
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the generic loss function by L(y, f(x)) that outputs the loss incurred when y differs from

f(x). We can now define “the risk of the classifier f” as:

R(f) =

∫
L(y, f(x))dD(x, y) (2.1)

where the probability measure D(z) = D(x, y) is unknown. This risk is often referred to as

the true risk of the classifier f . For the zero-one loss, i.e. L(y, f(x)) = 1 when y 6= f(x) and

0 otherwise, we can write the expected risk as:

R(f)
def
= Pr(x,y)∼D (f(x) 6= y) (2.2)

The generalization error is a measure of the deviation of the expected risk of the classifier

f = A(S) learned from the overall minimum expected risk. Hence, the generalization error

of algorithm A over a sample S is:

R(A, S)
def
= R(f)− inf

f ′∈F
R(f ′)

In the most common learning principle called the Empirical Risk Minimization, the ex-

pected risk takes the form of a measurable quantity known as the empirical risk. It can be

shown that the empirical risk converges exponentially to the true risk with respect to some

sample size m (see (Herbrich, 2002) subsection A.5.2 for details) Also, this convergence rate

depends on the true risk and the sample size. We show this in Section 2.5.1.

Given a training set S = (z1, . . . , zm) of m examples, the task of a learning algorithm

is to construct a classifier with the smallest possible risk without any information about D.

However, computing the true risk of a classifier as given above, can be quite difficult. Hence,

the learner often computes the empirical risk RS(f) of any given classifier f according to:

RS(f)
def
=

1

m

m∑
i=1

L(yi, f(xi)) (2.3)

which is the risk of the classifier with respect to the training data. Here, L(y, f(x)) is the

specific risk function that outputs the loss of mislabeling an example. Note that this function

can be a binary function (outputting only 1 or 0), or a continuous function depending upon

the class of problems as discussed in section 2.4.

2.4 Classes of Learning Problems

Learning problems can be formulated in many ways. However, we discuss three main classes

of learning problems along the lines of Vapnik (1995):
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2.4.1 Classification

This problem is also known as the Pattern Recognition problem. We consider the two-

class classification problem. Note that multi-class classification is a general case of two-class

classification. Any multi-class classification problem can be broken down into multiple two-

class classification problems.

In a two-class classification problem the label y is either 0 or 1, i.e. y ∈ {0, 1}. In this

case the classifier f outputs only 0 or 1. Hence, we can consider this classifier as a set of

Indicator functions. The classifier incurs a loss of 0 whenever the output of the classifier

matches the true label y of the instance vector x and 1 otherwise. The later condition is

known as classification error or misclassification.

Hence, the classification problem is to minimize the probability of this misclassification

error over the set S of training examples while making a promising case of good generaliza-

tion. The true error in this case can be represented as:

R(f)
def
= Pr(x,y)∼D (f(x) 6= y) = E(x,y)∼DI(f(x) 6= y)

where I(a) = 1 if predicate a is true and 0 otherwise. Similarly, the empirical risk RS(f)

can be shown to be:

RS(f)
def
=

1

m

m∑
i=1

I(f(xi) 6= yi)
def
= E(x,y)∼SI(f(x) 6= y)

Note that the loss function L(·, ·) in Equation 2.3 is replaced by indicator function for

the classification problem.

2.4.2 Regression Estimation

Let the label y of every instance vector be such that y ∈ R. Let f(x) be the set of real

functions containing:

f ′(x) =

∫
ydD(y|x)

Note that f ′(·) is the target regression function. It has been shown that the regression

function is the one that minimizes the squared loss. Hence the loss function is:

L(y, f(x)) = (y − f(x))2 (2.4)

The regression problem is the one of minimizing the true risk of Equation 2.1 while

minimizing the loss of Equation 2.4.
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2.4.3 Density Estimation

The problem of Density estimation is the one of estimating densities from a set of densities

p(x). The loss function to minimize in this case is:

L(p(x)) = − log p(x) (2.5)

Hence the problem is to estimate the density while minimizing the true risk of Equation

2.1 with loss function of Equation 2.5.

2.5 Empirical Evaluation

So we have a learning algorithm and we have obtained a hypothesis as the output after

training this learning algorithm on training data. The questions that arise now are: How

good is this hypothesis? In fact, if there are competing hypotheses, how do we select the

best one? And finally, how will this hypothesis perform on future unseen instances? i.e. how

will this hypothesis generalize? Evaluation methods aim at answering these questions that

essentially can be broken down into three broad categories:

(i) Testing: Measuring the “goodness” of hypothesis (ideally on unseen data).

(ii) Model Selection: Selecting the best hypothesis from among the potential hypotheses.

(iii) Generalization: Predicting quantitatively the future performance of hypothesis based

on its performance in training and/or testing.

In order to evaluate the classifier’s performance over a domain, we would ideally like to

have a measure on how this classifier would perform on unseen instances. Note that these

unseen instances are assumed to come from the same distribution as the training instances

for the learning algorithm. One approach of obtaining such quantitative measure is via a

generalization risk bound over the error of chosen hypothesis. Such risk bounds provide

guarantees over the true risk of the classifier in terms of its performance on training (or

test) data. See (Langford, 2005) for more details. We will detail such bounds in Chapter 3,

focusing in particular, on uniform risk bounds obtained with respect to the hypothesis’

performance on the training set. Here we discuss two prominent methods that enable us to

evaluate the hypothesis by testing it on unseen instances. The amount of the data available

generally governs the choice of an apt method for evaluation in various scenarios.
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2.5.1 Holdout Method

In this method, a separate set of instances is reserved to assess the classifier’s performance.

This set is different from the training set for the learning algorithm. The learning algorithm

takes as input a labeled set of instances for training and outputs a classifier. This classifier

is then given the unlabeled set of instances from the testing set. The classifier outputs labels

for each of these instances and the estimate of the empirical error is basically the fraction

of test instances that the classifier misclassifies. Performance of the classifier on a separate

test set is generally a good indicator of its generalization performance. Formal guarantees

over the test set performance in terms of confidence intervals can be provided in this case.

We show one such bound below that utilizes the Hoeffding’s inequality. We establish the

confidence interval within which we expect the true risk to fall with confidence 1−δ for some

δ ∈ (0, 1]. However, this further goes to show the inherent limitation of this method too.

Consider an algorithm A that given some training set S outputs a classifier h = A(S).

We wish to estimate the true risk R(h) in terms of the risk on a distinct test sample T

(disjoint from training set S). We can define the empirical risk of h on test set T as:

RT (h)
def
=

1

m′

m′∑
i=1

L(h(xi), yi)

where m′ def
= |T | is the number of examples in the testing set. Note that the test set T =

z1, ..., zm′ of m′ samples is formed from the instantiation of the variables Zm′ def
= Z1, ...,Zm′ .

Every Zi is distributed according to some distribution D that generates the sample S. Each

zi consist of an example xi and its label yi. Each example xi can hence be considered an

instantiation of a variable Xi and its label yi as an instantiation of variable Yi.

Hence, over all the test sets generated from the instantiations of variables Zm′
, the risk

of some classifier h can be represented as:

R(Zm′
, h)

def
=

1

m′

m′∑
i=1

L(h(Xi), Yi)

where L() is again the loss function over the misclassification. Now, consider the loss function

L = Lz such that Lz is a Bernoulli variable, then the true risk can be expressed as:

R(h) = {Pr(Lz(h(X), Y ) = 1} def
= p

In order to bound the true risk R(h) we make use of the Hoeffding’s inequality stated

below:
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Theorem 3. (Hoeffding: Bernoulli case) For any sequence Y1, Y2, ..., Ym′ of variables obeying

a Bernoulli distribution with Pr(Yi = 1) = p ∀i, we have:

Pr

[∣∣∣ 1

m′

m′∑
i=1

Yi − p
∣∣∣ > ε

]
≤ 2 exp(−2m′ε2)

This implies that:

Pr

[∣∣∣ 1

m′

m′∑
i=1

Yi − p
∣∣∣ ≤ ε

]
≥ 1− 2 exp(−2m′ε2)

Now, since Lz(h(X), Y ) is a Bernoulli variable, we have:

Pr
[∣∣R(Zm′

, h)−R(h)
∣∣ ≤ ε

] ≥ 1− 2 exp(−2m′ε2)

Equating the right hand side of the above equation to 1− δ, we get:

t1−δ = ε =

√
1

2m′ ln
(2

δ

)

Hence, for any classifier h, the generalization error R(h), with probability 1− δ and test

error RT (h) on some test set T , satisfies:

∣∣RT (h)−R(h)
∣∣ ≤ t1−δ =

√
1

2m′ ln
(2

δ

)
(2.6)

Therefore, with probability 1− δ:

R(h) ≈ RT (h)± t1−δ

Hence, it can be seen that the convergence of empirical risk to the true risk depends on

the sample size m′ and the true risk R(h). This in turn gives us bound over the sample

complexity. Rearranging Equation 2.6 and solving for sample size m′, we get:

m′ ≥ 1

2ε2
ln

(2

δ

)

The sample size bound grows very quickly for small ε and δ. This shows that hold-out

might not be a good idea if the dataset is not large enough. With a single train and test

partition, too few cases in the training group can lead to learning a poor concept, while too

few test cases can lead to erroneous error estimates.
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Model Selection using Holdout Method

The test set performance of a hypothesis generally gives an idea of the “goodness” of the

selected classifier. However, how can we utilize training data to select a final hypothesis

that should be tested? The answer to this question lies in model selection, i.e. selecting the

best hypothesis from among the potential candidate hypotheses. In the holdout scenario,

a general approach to selecting the best hypothesis is to divide the data into three disjoint

subsets (instead of two subsets as mentioned before): a training set, a validation set and a

test set. The learning algorithm is trained on the training set yielding a set of candidate

hypotheses (depending on say different parameter values that the algorithm takes as input).

Each of these hypotheses are then tested on the validation set and the one that performs the

best (i.e. makes least errors) on this validation set is then selected. Testing of this selected

hypothesis is done in the same manner as discussed above via testing its performance on the

test set.

2.5.2 Resampling

One of the most common difficulties in machine learning problems is the unavailability of

enough data. Hence, as discussed above, if we use all the available data for training, it is not

possible to have a good performance measure about the future performance of the classifier.

Second, if we divide this already small dataset into training and testing sets, then reliable

learning is not possible. Moreover, the sample size requirement grows exponentially with

falling ε and δ. In such cases, researchers often make use of what are called the resampling

methods.

As the name suggests, these methods are based upon the idea of being able to re-use the

data for training and testing. Resampling has some advantages over single partition holdout

method. Resampling allows for more accurate estimates of the error rates while training on

most cases. Also, this method allows the duplication of the analysis conditions in future

experiments on the same data. The most prominent resampling method is the k-fold cross

validation:

• k-fold Cross-validation method: In k-fold cross validation, the training data are

randomly divided into k (usually 10) mutually disjoint sets of approximately equal size

(of at least 30 examples). The hypothesis is learned from the examples in k − 1 sets,

and is tested on the examples from the remaining set. This is repeated k times, once

for each set (i.e. each set is once used as a test set). The average error rates over all k
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sets is the cross-validated error rate.

• Leave one out method: The Leave one out estimate is a special case of k-fold cross

validation such that k = m where m is the number of examples in the training data.

A hypothesis is learned from m− 1 examples and is tested on the remaining example.

This is repeated m times, each time leaving out a different example. The error rate is

the total number of errors on the single test case divided by m.

Model Selection using Resampling

In the resampling scenario, one of the prominent methods to perform model selection is

nested k-fold cross validation. The idea behind the nested k-fold cross validation is to divide

the dataset into k disjoint subsets just as done in the above described k-fold cross validation

method. But now in addition, we perform a separate k-fold cross validation within the k− 1

folds during training. The testing is as usual performed on the kth fold. The rationale behind

this approach is to make the algorithm totally unbiased in parameter selection.

Resampling methods can serve as good evaluation measures when the available data is

limited. However, these methods also have some limitations. Resampling methods do not

estimate the risk of a classifier but, rather, estimate the expected risk ES(A(S)) of a learning

algorithm A over samples S of size m(1−1/k) for k-fold CV. Although, as mentioned above,

these methods do try to take the most out of data by training on most cases but suffer

from the fact that no confidence intervals are known and it is thus currently impossible to

provide formal guarantees over the risk of classifier. This is in contrast with holdout methods

where such guarantees and confidence intervals can be precisely stated. The sample standard

deviation of k-fold CV risk Rk
CV over the k different groups serves at best to give a rough

idea of the uncertainty of the estimate. However, training set bounds provide acceptably

good guarantees over the generalization behavior of the classifier in terms of its empirical

performance on training set. We will present these bounds in detail in Chapter 3. There

are many variants of resampling methods. See (Weiss and Kapouleas, 1989, Mitchell, 1997,

Kibler and Langley, 1988) for resampling and other evaluation methods.

As discussed before, Statistical Learning Theory provides a formalization to Machine

Learning in the form of underlying frameworks guiding the algorithms as well as dealing

with other theoretical issues such as providing mathematical guarantees over the error rate

and performance of classifier. The basic idea behind the theoretical performance measure

for empirical evaluation of classifier come in the form of generalization error bounds also

known as risk bounds. The generalization error bounds basically provide upper (and possibly
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lower) ranges over the empirical errors obtained on training (or test) data in which one

would expect the true error to fall. These bounds can depend not only on the classifier’s

performance on the training or test set but also on the framework under which the learning

algorithm is functioning such as complexity of the hypothesis class. The error bound that

we presented in Section 2.5.1 is an example of one such bound based on the classifier’s test

set performance. We give more details about some prominent learning frameworks and these

bounds in Chapter 3.
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2.6 Bibliographical Notes

In addition to the cited literature in the text, please follow the following links for more

detailed account of various topics.

For a detailed discussion on the various types of learning and issues in machine learning

see (Mitchell, 1997, Duda, Hart and Stork, 2001, Guyon and Elisseeff, 2003, Witten and

Frank, 2000) and the references therein. For history of Machine Learning see (Snell, 1997)

and references therein. For details on Unsupervised learning see (Mitchell, 1997, Hinton and

Sejnowski, 1999, Hastie, Tibshirani and Friedman, 2001). One of the main result in unsu-

pervised learning in the field of Pattern Recognition has appeared in the form of Kohonen’s

Algorithm and related approaches, the main being Self Organizing Maps (SOMs). Details

can be found in (Kohonen, 1982, 1989, 1995). SOMs provide a way to represent multidi-

mensional data into a lower dimensional space. This dimensionality reduction approach is

basically a data-compression scheme called Vector Quantization. See (Gersho and Gray,

1992) for details on vector quantization and data-compression.

For details on Empirical evaluation see (Mitchell, 1997, Dietterich, 1998, Provost and

Fawcett, 1998, Demšar, 2006). For details on Boosting see (Meir and Rätsch, 2003, Schapire,

1990, 1999). On the lines of sample compression, approaches such as Prototype Reduction

Schemes (PRS) have also shown good performance. The PRS have been explored to many

tasks. See (Bezdek and Kuncheva, 2001) for PRS useful in Nearest Neighbor classification

for instance. However, obtaining bounds on the generalization performance of the classifiers

is quite difficult in such cases.



CHAPTER 3

Statistical Learning Theory: An Introduction

This Chapter presents an introduction to Statistical Learning Theory. In particular, we present an

overview of different algorithmic approaches to learning and cover some main mathematical models

of learning. For each model, we present a risk bound on the generalization ability of learning

algorithms by studying the uniform convergence of expected risk. The bounds are called Uniform

Risk Bounds.

3.1 Introduction

As discussed before, Machine Learning aims at automating the process of inductive infer-

ence. A formalization of this process is lent by Statistical Learning Theory. Design and

implementation of competent and effective machine learning algorithms warrants a scruti-

nized detailing of various components both formally and analytically. To this end, statistical

learning theory provides a framework to characterize the behavior of the learning algorithm.

This is generally done by providing a mathematical model in which the learning is per-

formed. The theory focuses on issues such as learnability of the task in the model, sample

and/or time complexity of the learning algorithm and finally guarantees on the generaliza-

tion performance of the algorithm. The goals of statistical learning theory can broadly be

summarized as:

1. Providing machine learning with a mathematical framework;

2. Within this framework, providing guarantees for various aspects of learning such as

generalization error and sample complexity;

3. Analyzing the learning problems to guide the learning process. This analysis can help

in providing answers to issues like the level of difficulty that is inherent to a particular

learning task and the best suited algorithm to learn this task.

Our main focus will be the mathematical models of learning. The main advantage of a

mathematical learning model is that guarantees on the generalization ability of the learning

20
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algorithm can be obtained from them. We break our study of statistical learning theory

into Learning Algorithms, Learning models and Risk Bounds. The algorithmic approaches

to learning focus on: how to select the best hypothesis in light of the available data? Two

prominent approaches exist: the empirical risk minimization approach and the structural

risk minimization approach. Also there are some other methods that are built on top of one

or both of these two approaches, such as Regularization. We will discuss these briefly in this

chapter.

We know that there is no way to calculate the true risk R(f) for f ∈ F . Hence, we

need to obtain as best an estimate of true risk as possible using the empirical risk RS(f)

that can be calculated on the available data. That is, we wish to investigate the (true) risk

of classifiers under various models in terms of what they can achieve on the training data

(e.g. empirical risk). We will show that rather than studying the generalization behavior of

a learning algorithm it is sufficient to study the uniform convergence of the empirical risk

to the true risk over all the classifiers. Under each of the learning models that we discuss,

we will present such bounds based on the convergence of expected risks. These bounds are

collectively called Uniform risk bounds.

The main mathematical learning models that we will study include: The PAC (Probably

Approximately Correct) and VC models, the Occam Razor model and the Sample Com-

pression model. We will also briefly review the PAC-Bayes framework that provides PAC

guarantees to Bayesian algorithms. The bounds, especially the PAC, VC and the sample

compression risk bounds, are along the lines of Marchand (2004). We further derive the

Occam’s Razor bound under similar settings. The PAC-Bayes bound is due to McAllester

(2003). The version we present is due to Langford (2005) and Seeger (2002).

In this thesis, we find general bounds for classifiers that allow the learner to make some

training error. The dependence of bounds on what can be achieved on training data is not

only in terms of the training error. In coming chapters, we will see how different quantities

over the training performance are added to the bound considerations. These quantities might

include, for instance, the sparsity of the solution (using the minimal number of training

examples to specify the classifier) and the separating margin achieved by the classifiers.

In fact, studying the interplay between sparsity and the separating margin of the decision

surface of classifier and exploiting this interplay to obtain better generalization will be one

of the main aims of our algorithmic designs.
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Moreover, we will mainly derive PAC-style bounds1 of the following form: For some

δ ∈ [0, 1], with probability 1 − δ, over a random draw of some sample from a distribution

D, the expected error rate of the classifier is bounded by some function of δ, the empirical

risk of classifier and some other properties of the classifier computable from S (such as the

compression set, the margin, etc.). These bounds are also commonly known as training set

bounds.

There is another class of bounds that depends on the empirical error rate of the classifier

on a separate testing set. We gave an example of such a test set bound obtained from the

Hoeffding’s inequality in Section 2.5.1. These bounds depict the probability of the amount of

deviation of the generalization error of the classifier from the performance of the classifier on

a set of test examples. These test examples are not used in training of the learning algorithms

that generated the classifier. Hence, these test set bounds are unbiased. However, there are

factors that limit this approach, the main being the limited availability of data, reserving a

separate test set from which is not possible without adversely affecting the training of the

learner. Another reason supporting the training set bounds, as discussed by Langford (2005)

is that many algorithms implicitly assume that the train set accuracy is very close to the

true error behavior of the classifier and hence more amount of training data available can

guide the process of choosing the classifier better.

3.2 Definitions

The classification problems we consider are the binary classification problems. The input

space X consists of an arbitrary subset of Rn and the output space Y = {−1, +1}. We

denote a training set by S. The training set S = z1, ..., zm of m samples is formed from

the instantiation of the variables Zm def
= Z1, ...,Zm. Each zi consist of an example xi and its

label yi.

The learning algorithm A outputs a classifier h ∈ H, when input some training set S.

We denote by RZm(h), the empirical risk RS(h) and by PZm(a) the probability, over one

random draw of Zm, that predicate a is true. R(h) denotes the true risk of the classifier h.

1See Section 3.5
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3.3 Learning Algorithms

The question of choosing the best hypothesis that not only describes the observed data but

can also generalize well is to the core of various algorithmic approaches to learning. Note that

for any learning method, we require its performance to improve with training sample size so

that the generalization error should decrease as the sample size increases. We discuss the

Empirical risk minimization and the Structural risk minimization approach to achieve this.

Both these approaches by themselves have been proven to be quite effective and have also

paved the way for other approaches that exploit these to yield better ones. Note, however,

that unlike the structural risk minimization, the empirical risk minimization approaches

focus on one hypothesis class and hence are relatively restrictive.

3.3.1 Empirical Risk Minimization

Given some training set S, the empirical risk minimization (ERM) algorithm Aerm outputs

the hypothesis that minimizes the empirical risk on the training set. That is,

Aerm(S) = h′ def
= argmin

h∈H
RS(h)

3.3.2 Structural Risk Minimization

The basic idea behind a structural risk minimization algorithm (SRM) is to choose a hypoth-

esis (or model) with the least complexity (also referred to as size or capacity) that achieves a

small empirical risk. For this, H is represented using a sequence of hypotheses of increasing

sizes {Hd : d = 1, 2, . . .} and the structural risk minimization algorithm Asrm is such that:

Asrm(S) = h′ def
= argmin

h∈Hd,d∈N
RS(h) + p(d, |S|)

where p(d, |S|) is a function that penalizes the algorithm for hypothesis spaces of increasing

complexity.

Let cm be some complexity measure on hypothesis space. We would have a set of hy-

pothesis spaces H = {H1, . . . ,Hk} such that the complexity of hypothesis space Hi denoted

as cmHi
is greater than or equal to cmHi−1

. Then the structural risk minimization algorithm

would be to compute a set of hypotheses minimizing the empirical risk over the hypothesis

spaces H = {H1, . . . ,Hk} and then to select the hypothesis space that gives the best trade-

off between its complexity and the minimum empirical risk obtained over it on the training

data.
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3.3.3 Regularization

There are other approaches that extend the above algorithms such as regularization where

one tries to minimize the regularized empirical risk. This is done by defining a regularizing

term or a regularizer (typically a norm on the hypothesis ||h||) over the hypothesis space H
such that the algorithm outputs a hypothesis h′:

h′ = argmin
h∈H

RS(h) + λ||h||2

Variants of this approach exist such as Normalized regularization. The details on these

and other approaches can be found in (Herbrich, 2002, Bousquet, Boucheron and Lugosi,

2004, Hastie, Tibshirani and Friedman, 2001) among others.

3.4 ERM and Uniform Convergence

Recall that given some training set S formed from m examples such that each example z =

(x, y) is formed from the instantiation of variable Z = (X, Y ), the empirical risk minimization

algorithm Aerm is such that:

Aerm(S) = h′ def
= argmin

h∈H
RS(h)

since the risk of the classifier output by the algorithm Aerm can be minimized only by

minimizing the empirical risk on training set S. We focus on algorithms that learn by risk

minimization. Recall that the empirical risk RS(h) is defined as:

RS(h)
def
=

1

m

m∑
i=1

L(h(x), y)

where L is some loss function over the misclassification of some example x by a classifier h.

The true risk is just the expectation over this risk:

R(h) = EX,Y L(h(X), Y ) = Pr(h(X) 6= Y )

Now, the classifier with the minimal true risk, denoted by h∗, is such that:

h∗ def
= argmin

h∈H
R(h)
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Since, RS(h∗) ≥ RS(h′), we can bound R(h′) by:

R(h′)−R(h∗) ≤ R(h′)−R(h∗) + [RS(h∗)−RS(h′)]

= |R(h′)−RS(h′) + (RS(h∗)−R(h∗))|
≤ |R(h′)−RS(h′)|+ |R(h∗)−RS(h∗)|
≤ 2 sup

h∈H
|R(h)−RS(h)|

This goes to show that it is sufficient to consider the uniform convergence of empirical

risk to expected risk over all classifiers h ∈ H instead of focusing on the generalization error of

the empirical risk minimization algorithm directly since any upper bound on the convergence

is also an upper bound on the risk of ERM algorithm. We study such bounds and hence call

them Uniform Risk Bounds.

3.5 PAC and VC Learning

The PAC Learning model was introduced by Valiant (1984) with the computational effi-

ciency of learning algorithms as the central theme. This computational efficiency of learning

algorithm appeared in the form of the notion of feasibility of a learning problem. A learning

problem is feasible if there exists an algorithm that can solve it in polynomial amount of

time. The PAC-model aims at successful learning of some unknown target concept, with

high probability, by a hypothesis that approximates this target concept closely. Since the

learning algorithm, instead of trying to exactly learn the target concept, tries to approxi-

mate it as accurately as possible with a high probability, the model is called the Probably

Approximately Correct learning model. The original work of Valiant (1984) focused on a

more specialized task of learning logical formulae assuming the existence of a hypothesis

space H that included the target formula to be learned. The distribution of the input for-

mulae X , however, was unknown. This can be viewed more generally as the problem of the

uniform convergence of the empirical risk to the true risk. The analysis focused on finite

hypothesis space, i.e. |H| < ∞. Various generalizations have since been proposed to tackle

the issue of infinite hypothesis space based on some measure(s) related to the complexity of

the hypothesis class, like its VC dimension. Note that PAC results are generally stated as

the number of examples needed to achieve a risk less than ε with a probability 1− δ, where

ε, δ ∈ [0, 1]. This is equivalent to stating a risk bound in terms of ε as a function of the

number of examples in the training set.
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The VC (Vapnik-Chervonenkis) framework (Vapnik and Chervonenkis, 1971, Vapnik,

1982) also studies the convergence of expected risk using an a-priori measure of complexity

of the hypothesis space called the Growth function. However, owing to the difficulty of

computing the growth function, a quantity called VC-dimension is used to characterize it.

VC dimension is also known as an integer-summary of the growth function. We will define

VC dimension in Section 3.5.2.

The difference between the PAC and VC approach is that PAC learning assumes R(h∗) =

0, i.e. h∗(xi) = yi ∀i ∈ S. Also, the PAC framework assumes RS(h′) = 0 for a classifier h′

output by the algorithm Aerm on a sample S of m examples. Hence:

R(h′) ≤ sup
h∈H:RS(h)=0

R(h)

Let us now study the PAC and VC risk bounds:

3.5.1 Bounds for Finite Hypothesis Space

Let us look for the bound on suph∈H(R(h) − RS(h)) when |H| < ∞ that is when the

hypothesis space is finite. Then:

P ′ def
= PZm

(
sup
h∈H

(R(h)−RZm(h)) > ε
)

= PZm

(∃h ∈ H : R(h)−RZm(h) > ε
)

= PZm

( |H|∨
i=1

R(hi)−RZm(hi) > ε

)

Now, We know that the union bound says that:

Theorem 4. (Union Bound) Let X1, X2, ...Xn ⊆ X be a finite number of sets from superset

X , then, for any measure PX :

PX (X1

⋃
X2

⋃
...

⋃
Xn) ≤

n∑
i=1

PX (Xi).

Hence:

PZm

( |H|∨
i=1

R(hi)−RZm(hi) > ε

)
≤

|H|∑
i=1

PZm

(
R(hi)−RZm(hi) > ε

)
(3.1)

Now, for any fixed hypothesis h, the true risk and the empirical risk are nothing but

the expectation and mean of a random variable between 0 and 1. Hence, we can apply the

Hoeffding’s inequality here to obtain:
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PZm

(
R(h)−RZm(h) > ε

) ≤ exp(−2mε2) ∀h (3.2)

Combining Equations 3.1 and 3.2, we get:

PZm

(
sup
h∈H

(R(h)−RZm(h)) > ε
) ≤ |H| exp(−2mε2)

Equivalently:

PZm

(∀h ∈ H : (R(h)−RZm(h)) ≤ ε
) ≥ 1− |H| exp(−2mε2)

Now, |H| exp(−2mε2) = δ when

ε2 =
1

2m
ln

( |H|
δ

)

Hence, we proved the following theorem:

Theorem 5. For any finite space H of classifiers and ∀δ ∈ (0, 1]:

PZm

(
∀h ∈ H : R(h) ≤ RZm(h) +

√
1

2m
ln

( |H|
δ

))
≥ 1− δ

The above bound can be improved for the risk of the classifier output by algorithm Aerm

on training set S when ∃h ∈ H : R(h) = 0. This is the case when the algorithm Aerm

outputs a classifier with zero empirical risk, i.e. RZm(h) = 0. Hence, we bound the following

probability:

P ′ def
= PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
)

Bounding this above P ′ by δ, we get:

PZm

(∀h ∈ H : R(h) ≤ ε ∨RZm(h) 6= 0
) ≥ 1− δ

This implies the following:

PZm

(∀h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ ε
) ≥ 1− δ

Hence, applying union bound, we get:

P ′ def
= PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
) ≤

|H|∑
i=1

PZm

(
R(hi) > ε ∧RZm(hi) = 0

)

Limiting this probability now (using the union bound):
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PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
) ≤

∑

h∈H
PZm

(
RZm(h) = 0 ∧R(h) > ε

)

≤
∑

h∈H
PZm

(
RZm(h) = 0|R(h) > ε

)

Now, for any classifier h having R(h) > ε, we have:

PZ

(
h(X) = Y

)
< 1− ε ≤ e−ε

Since every example zi is generated i.i.d. from distribution PZ, we have, for m examples:

PZm

(
RZm(h) = 0|R(h) > ε

) ≤ (1− ε)m ≤ e−mε ∀h

Hence,

PZm

(
R(h) > ε ∧RZm(h) = 0

) ≤ (1− ε)m ≤ e−mε ∀h (3.3)

This implies:

PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
) ≤ |H|e−mε

which further implies that:

PZm

(∀h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ ε
) ≥ 1− |H|e−mε

Now equating δ = |H|e−mε, we have:

ε =
1

m
ln

( |H|
δ

)

This gives us:

PZm

(
∀h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ 1

m
ln

( |H|
δ

))
≥ 1− δ

Hence, we proved the following theorem:

Theorem 6. For any finite space H of classifiers and ∀δ ∈ (0, 1]:

PZm

(
∀h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ 1

m
ln

( |H|
δ

))
≥ 1− δ

Note that the bound of Theorem 6 is tighter than the bound of Theorem 5 since here we

bound the generalization error by a factor of 1/m as opposed to the previous bound where

this factor is 1/
√

m.
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3.5.2 Bound for Infinite Hypothesis Spaces

The above PAC bound over the finite hypothesis space can be extended to the case when

the classifier space H is infinite. We first derive a bound when H is countably infinite2. For

this, let us introduce a distribution P over the space of classifiers H. This distribution is

the a priori distribution without any reference to the training sample S. The only condition

that this distribution should satisfy is:

∑

h∈H
P (h) ≤ 1

For the case when the empirical risk is zero, i.e. ∃h ∈ H : RZm(h) = 0, we bound:

P ′ def
= PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
)

Utilizing Equation 3.3 and equating it to P (h)δ, we have:

PZm

(
R(h) > ε ∧RZm(h) = 0

) ≤ e−mε = P (h)δ ∀h ∈ H (3.4)

In this case the ε depends on h, and yields:

ε(h) =
1

m
ln

(
1

P (h)δ

)

Applying the union bound gives us:

P ′ def
= PZm

(∃h ∈ H : R(h) > ε ∧RZm(h) = 0
)

≤
∑

h∈H
PZm

(
R(h) > ε ∧RZm(h) = 0

) ≤
∑

h∈H
P (h)δ ≤ δ

Note however that for above bound to hold, H should be countable.

For any distribution P (h) such that P (h) > 0,∀h ∈ H, we have:

PZm

(
∃h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ 1

m
ln

(
1

P (h)δ

))
≥ 1− δ

Hence, we have shown the following theorem:

2VC bound can be used for infinite H as shown below.
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Theorem 7. For any measure P (h) over the countably infinite space of classifiers H such

that P (h) > 0, ∀h ∈ H, and ∀δ ∈ (0, 1]:

PZm

(
∃h ∈ H : RZm(h) = 0 =⇒ R(h) ≤ 1

m
ln

(
1

P (h)δ

))
≥ 1− δ

Note that the Theorem 6 is a special case of Theorem 7 when the classifier space H is

finite and P (h) = 1/|H|, ∀h ∈ H.

As we discussed earlier, the VC framework uses an a-priori measure of complexity of the

hypothesis space called the Growth function.3 However, owing to the difficulty of computing

the growth function,4 a quantity called VC-dimension is used to characterize it. In simple

terms, the VC dimension of hypothesis space H, is defined to be the maximum number d of

instances that can be labeled as positive and negative examples in all 2d possible ways, such

that each labeling is consistent with some hypothesis in H(Vapnik and Chervonenkis, 1971,

Vapnik, 1982, Cover, 1965)(Haussler, 1992).

Using this VC dimension d, a bound of the following form on the true risk of a classifier

can be obtained. The following bound is due to Vapnik (1998). The version presented is due

to Herbrich (2002)5:

Theorem 8. (VC bound) For any space of classifiers H, ∀h ∈ H, and ∀δ ∈ (0, 1]:

∀2m > d : PZm

(
R(h)−RZm(h) ≤ ε(d)

) ≥ 1− δ

where,

ε(d) =

√
8

(
ln 4

δ

m
+

d

m

(
ln

2m

d
+ 1

))

3.6 Occam Razor Learning

The Occam approach to learning has resulted from the principle wielded by theologian

William of Occam. The principle tends to simply avoid the superfluous elaborations. With

respect to learning, the Occam’s principle can be interpreted as (Blumer et. al., 1987):

Given two explanations of the data, all other things being equal, the simpler explanation is

preferable. Hence, the principle can be seen as the one aiming to find the simplest hypothesis

consistent with the sample data (Angluin and Smith, 1983). Since the principle tends to cut

off unnecessary information, it has been known as Occam’s Razor.

3We do not discuss the growth function analysis here. Please refer to Herbrich (2002) for detailed analysis.
4Note that we need to calculate the growth function before learning which is not possible for an arbitrary

H and any m.
5Please refer to Herbrich (2002) for details on the proof of the theorem.
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The Occam model of learning, in contrast with the PAC model, makes no assumption

about the distribution from which samples are drawn. The PAC model defined learning

directly in terms of the predictive power of the selected hypothesis that the learner identifies

from the hypothesis class. However, this criterion made an implicit assumption that the

training as well as testing was performed on samples drawn from fixed probability distribution

D. The Occam model makes no such assumption about the distribution of instances. The

labels of the examples, however, are still generated by an unknown target concept (chosen

from a known class). The hypothesis that explains the observed data most succinctly is

preferred.

The succinctness might take different forms. For instance, the succinctness might aim to

find or discover a pattern in the observed data so as to output a compact representation of

this data. The succinctness can also be measured in terms of the size of the representation

on the hypothesis directly. Yet another way of measuring succinctness can be in terms of the

cardinality of the hypothesis class used by the algorithm, since a typical hypothesis from a

hypothesis class with low cardinality can be represented by a short (possibly binary) string

and vice-versa. It should be noted that the last measure would not work in the cases where

the hypothesis class is infinite. The measure of VC-dimension can be useful in such cases.

The key question that arises now is: Is Succinctness a guarantee for good generalization?.

In order to be able to learn successfully, we indeed need such a guarantee. It has been

shown that, in the restricted setting of the PAC model, Occam algorithms have predictive

powers, i.e. Occam learning implies PAC learning in this restricted setting (Blumer et. al.,

1987, Kearns & Vazirani, 1994). Hence, under appropriate conditions, any algorithm that

can find a succinct representation of an hypothesis consistent with the training sample is

automatically a PAC learning algorithm.

We now present the theorem that relates the notion of Occam learning to PAC learning.

Specifically, we are interested in bounding the error ε of an algorithm A with a probability

1 − δ with the help of an a-priori distribution over the hypothesis as an implicit measure

of succinctness. Note that if PH(h) is the a priori distribution over the hypothesis space,

then log(1/P (h)) is basically the amount of information (in bits if log2() is used) to identify

h ∈ H. Hence, this distribution acts as a measure of succinctness.

We derive the bound on the true risk of a learning algorithm A. Recall that if A(Zm) is

the classifier output by the algorithm A on some instantiation of Zm, then we first bound

P ′ where:

P ′ def
= PZm (R(A(Zm)) > ε) (3.5)
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Hence, the goal is to find the smallest value for ε such that P ′ ≤ δ. In that case, we will

have:

PZm (R(A(Zm)) ≤ ε) ≥ 1− δ

Applying the union bound, we have:

P ′ ≤ PZm (∃h ∈ H : R(h) < ε)

≤
∑

h∈H
PZm (R(h) < ε) (3.6)

Now, let us say that the classifier make k errors over m training examples. Also, we allow ε

to depend on h. Hence, we can now write the following:

PZm(R(h) < ε(h)) =
m∑

k=0

PZm(R(h) < ε(h), RZm(h) = k/m) ≤
m∑

k=0

(
m

k

)
(1− ε(h))m−k (3.7)

Hence, the Equations 3.6 and 3.7, yield:

P ′ ≤
∑

h∈H

m∑

k=0

(
m

k

)
(1− ε(h))m−k (3.8)

For any classifier h, we use any function PH(h) having the following property:

∑

h∈H
PH(h) ≤ 1 (3.9)

Hence, the function PH(h) can be interpreted as an a priori distribution over H when it

sums to one. Let ε be such that:

(
m

k

)
[1− ε(h, k)]m−k = PH(h) · ζ(k) · δ (3.10)

where ζ is defined by:

ζ(a)
def
=

6

π2
(a + 1)−2 (3.11)

For all non-negative integer a, it is well known that

∞∑
a=0

ζ(a) = 1.
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Therefore, with the following ε(h):

ε(h) = ε(h, k, δ) = 1− exp

( −1

m− k

[
ln

(
m

k

)
+ ln

(
1

PH(h)

)
+ ln

(
1

ζ(k)

)
+ ln

(
1

δ

)])

(3.12)

we have that P ′ ≤ δ. Hence, We have the following theorem:

Theorem 9. For any learning algorithm A that outputs a classifier h ∈ H when given a

training set of m examples on which h makes k ≤ m errors:

PZm {∀h ∈ H : R(A(Zm)) ≤ ε(h, k, δ)} ≥ 1− δ

where ε(h, k, δ) is given by Equation 3.12.

The consistent case of the upper bound follows. When, h ∈ H makes no error on the

training set, we have:

ε(h) = 1− exp

(−1

m

[
ln

(
1

PH(h)

)
+ ln

(
1

δ

)])

3.7 Sample Compression Learning

The notion of Sample Compression comes from the work of Littlestone and Warmuth (1986)

in which they explored the learnability of boolean functions from samples along the lines of

Data Compression. Algorithms using sample compression select a subset of samples from a

training set of size m, and use these samples to represent a hypothesis. The basic idea is

to have a compression scheme i of size |i| (|i| ≤ m) for a concept class that consists of two

functions:

1. a compression function C; and

2. a reconstruction function R.

The compression function takes as input a finite sample (set of examples) and outputs

a subset i of size at most |i| (|i| ≤ m) of these examples. This subset is known as the

compression set6. The task of the reconstruction function is to use this compression set and

(re)construct the hypothesis for the target concept to be learned.

6the original work by Littlestone and Warmuth (1986) call this set as a kernel. However, we do not use

this term here to avoid confusion
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The idea of sample compression stems from the observation by Littlestone and Warmuth

(1986) that many learning algorithms use a fixed-size subsample of a given labeled example

to specify the hypothesis. Hence, it can be viewed as a compression of the sample of size

m to a (sub)sample of some fixed size. This compressed sample or the compression set is

enough to reconstruct the labels of the original m-sample. Littlestone and Warmuth (1986)

also show that if the algorithm possesses these data compression characteristics then that

alone is sufficient to guarantee learnability. The theorems relating the learnability and the

compression characteristics of the algorithm are basically built on top of the PAC model.

Littlestone and Warmuth (1986) also give sample size bounds for these cases.

A number of algorithms can be seen as sample compression based algorithms. The

classical perceptron learning rule is an example of sample compression algorithm where the

compression set consists of the examples used to update the weight vector and the threshold

of the separating hyperplane. The reconstruction function is nothing but the same perceptron

rule applied to the compression set in the order given by the training set S. The Support

Vector Machine (Vapnik, 1998, Cristianini and Shawe-Taylor, 2000), is another such example.

The SVM aims at compressing the training sample into a compression set. The examples of

this set are called the support vectors. The reconstruction function is again nothing but the

same maximum (soft) margin algorithm applied only to these support vectors.

3.7.1 Sample Compression Risk Bound

Let us start with a formal description of the compression scheme. Recall that, a learning

algorithm A is said to be a sample-compression algorithm iff there exists a compression func-

tion C and a reconstruction function R such that for any training sample S = {z1, . . . , zm}
(where zi

def
= (xi, yi) for xi ∈ X and yi ∈ Y), the classifier A(S) returned by A is given by:

A(S) = R(C(S)) ∀S ∈ (X × Y)m

For a training set S, the compression function C of learning algorithm A outputs a subset

zi of S, called the compression set , and an information message σ:

(zi, σ) = C(z1, . . . , zm)

The information message σ contains the additional information needed to reconstruct the

classifier from the compression set zi. Given a training sample S, we define the compression
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set zi by a vector of indices i:

i
def
= (i1, i2, . . . , i|i|) (3.13)

with : ij ∈ {1, . . . , m} ∀j (3.14)

and : i1 < i2 < . . . < i|i| (3.15)

where |i| denotes the number of indices present in i.

When given an arbitrary compression set zi and an arbitrary information message σ,

the reconstruction function R of a learning algorithm A must output a classifier. Note that

the information message σ is chosen from the set M(zi). This set M(zi) consist of all the

distinct messages that can be attached to the compression set zi. Only the existence of this

reconstruction function R justifies the classifier returned by A(S) to always be identified by

a compression set zi and an information message σ.

We present the generic risk bounds for sample compression learning algorithms in terms

of the amount of data compression they can perform on the training sample. The bound

is inspired by the work of Littlestone and Warmuth (1986), Floyd and Warmuth (1995),

Ben-David and Litman (1998) and Graepel, Herbrich, and Shawe-Taylor (2005). However,

it can be seen that this bound is significantly tighter than the ones presented in the works

mentioned above. The main observation behind the bounds is that any classifier that has a

small compression set of size |i| associated with it and has a small empirical risk with the

m−|i| remaining examples (i.e. the training examples other than the ones in the compression

set), has necessarily a small true risk.

As before, we derive the bound on the true risk of a learning algorithm A by first bounding

P ′ where:

P ′ def
= PZm (R(A(Zm)) > ε) (3.16)

Hence, the goal is to find the smallest value for ε such that P ′ ≤ δ. In that case, we will

have:

PZm (R(A(Zm)) ≤ ε) ≥ 1− δ

We denote by I the set of all 2m vectors of indices as defined by equations 3.13, 3.14,

and 3.15. M(zi) denotes the set of all messages σ that can be attached to compression

set zi. The empty message is assumed to always be present in M(zi) so |M(zi)| ≥ 1 is

always satisfied. Also, we use i to denote the the vector of indices made of all the indices

not present in i. Finally, we will allow ε to depend on Zi and σ as we show further. Since
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PZm(·) = EZi
PZi|Zi

(·), we have (by the union bound):

P ′ ≤ PZm (∃i ∈ I : ∃σ ∈M(Zi) : R(R(σ,Zi)) > ε)

≤
∑

i∈I
EZi

PZi|Zi
(∃σ ∈M(Zi) : R(R(σ,Zi)) > ε) (3.17)

≤
∑

i∈I
EZi

∑

σ∈M(Zi)

PZi|Zi
(R(R(σ,Zi)) > ε) (3.18)

Let us now stratify PZi|Zi
(R(R(σ,Zi)) > ε) in terms of the errors that R(σ,Zi) can make

on the training examples that are not used for the compression set. Ii denotes the set of

vectors of indices where each index is not present in i. For any training sample zm and a

compression set zi, Rzi
(f) represents the vector of indices pointing to the examples in zi

that are misclassified by f . Hence,

PZi|Zi
(R(R(σ,Zi)) > ε)) =

∑

j∈Ii
PZi|Zi

(
R(R(σ,Zi)) > ε,RZi

(R(σ,Zi)) = j
)

(3.19)

Whenever (σ,Zi) is fixed, the classifier R(σ,Zi) is fixed too. Also since each Zi is i.i.d.

according to the same (but unknown) distribution D, we have:

PZi|Zi

(
R(R(σ,Zi)) > ε,RZi

(R(σ,Zi)) = j
) ≤ (1− ε)m−|i|−|j| (3.20)

Hence, the Equations 3.18, 3.19, and 3.20 yield:

P ′ ≤
∑

i∈I
EZi

∑

σ∈M(Zi)

∑

j∈Ii
(1− ε)m−|i|−|j| (3.21)

=
∑

i∈I

∑

j∈Ii
EZi

|M(Zi)| (1− ε)m−|i|−|j| (3.22)

where |M(Zi)| ≥ 1 is the maximum number of distinct messages that can be attached to

compression set Zi. In deriving Equation 3.22 from Equation 3.21, the risk bound ε is allowed

to depend on the compression set Zi and the number of errors |j| made on the examples not

in Zi. Let us first investigate the case where the bound ε does not depend on the message

σ ∈M(Zi). Hence, in order that the r.h.s. of Equation 3.22 is at most δ, we need to find a

suitable ε(Zi, |j|). One possibility simply consists at solving:

(
m

|i|
)(

m− |i|
|j|

)
|M(Zi)| (1− ε(Zi, |j|))m−|i|−|j| = ζ(|i|) · ζ(|j|) · δ (3.23)

where ζ() is given by Equation 3.11.

The value of ε(Zi, |j|) satisfying Equation 3.23 is given by:
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ε(Zi, |j|) = 1− exp

( −1

m− |i| − |j|
[
ln

(
m

|i|
)

+ ln

(
m− |i|
|j|

)
+ ln

( |M(Zi)|
ζ(|i|)ζ(|j|)δ

)])
(3.24)

Consequently, we have proven the following theorem:

Theorem 10. For any sample compression learning algorithm with a reconstruction function

R that maps arbitrary subsets of a training set and information messages to classifiers:

PZm {∀i ∈ I, σ ∈M(Zi) : R(R(σ,Zi)) ≤ ε(Zi, |j|)} ≥ 1− δ

The risk bound given by Theorem 10 does not depend on the amount of training errors

made by the classifier on the compression set. However, if the reconstruction function is

constrained to be consistent with the compression set, less additional information will be

needed to reconstruct the classifier. Hence, the above risk bound will generally be smaller

for sample-compression learning algorithms that always return a classifier consistent with

the compression set. On the other hand, however, this constraint might force the learner to

output classifiers with larger compression sets.

Also note that we recover the result of Theorem 9 when the compression set Zi vanishes.

That is, the bound turns into an Occam’s Razor bound when the classifier (represented by

A(Zm) in Theorem 9 unlike in terms of the reconstruction function here) can be represented

solely by the distribution of messages (PH(h) in Theorem 9). In the above theorem, note

that the quantity 1
|M(Zi)| is equivalent to the distribution of messages PH(h) in Theorem 9.

Moreover, we use k to represent the number of errors in Theorem 9 as opposed to |j| here.

The risk bound ε can also depend on the information message σ by making explicit the

dependence of ε on Zi, σ, and j and incorporating these in Equation 3.21:

P ′ ≤
∑

i∈I

∑

j∈Ii
EZi

∑

σ∈M(Zi)

[1− ε(σ,Zi, j)]
m−|i|−|j| (3.25)

For any compression set zi, we use any function PM(zi)(σ) having the following property:

∑

σ∈M(zi)

PM(zi)(σ) ≤ 1 (3.26)

Hence, the function PM(zi)(σ) can be interpreted to have the compression-set-dependent

distribution of messages when it sums to one. Let ε be such that:
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(
m

|i|
)(

m− |i|
|j|

)
[1− ε(σ,Zi, |j|)]m−|i|−|j| = PM(Zi)(σ) · ζ(|i|) · ζ(|j|) · δ (3.27)

where ζ is defined by Equation 3.11. This gives:

ε(σ,Zi, |j|) = 1− exp

( −1

m− |i| − |j|
[
ln

(
m

|i|
)

+ ln

(
m− |i|
|j|

)
+ ln

(
1

PM(Zi)(σ)

)
+

ln

(
1

ζ(|i|)ζ(|j|)δ
)])

(3.28)

Therefore, again, P ′ ≤ δ. Hence, We have the following theorem:

Theorem 11. (Sample Compression Theorem) For any sample compression learning

algorithm with a reconstruction function R that maps arbitrary subsets of a training set and

information messages to classifiers:

PZm {∀i ∈ I, σ ∈M(Zi) : R(R(σ,Zi)) ≤ ε(σ,Zi, |j|)} ≥ 1− δ

The Theorem 10 is basically a corollary of Theorem 11 for the case PM(Zi)(σ) = |M(Zi)|−1 ∀σ ∈
M(Zi).

3.8 PAC-Bayes Bound

The PAC-Bayes approach was initiated by McAllester (1999). It aims at providing PAC

guarantees to “Bayesian” learning algorithms.

As we know, Bayesian algorithms are generally specified in terms of a prior distribution

P over a space of classifiers and a posterior distribution Q (over the same space of classi-

fiers). The prior distribution characterizes our prior belief about good classifiers (before the

observation of the data). On the other hand the posterior distribution takes into account

the additional information provided by the training data. A remarkable result that came

out from this line of research, known as the “PAC-Bayes theorem”, provides a tight upper

bound on the risk of a stochastic classifier called the Gibbs classifier .

Given an input example x, the label GQ(x) assigned to x by the Gibbs classifier is defined

by the following process. We first choose a classifier h according to the posterior distribution

Q and then use h to assign the label h(x) to x. The risk of GQ is defined as the expected

risk of classifiers drawn according to Q:

R(GQ)
def
= Eh∼QR(h) = Eh∼QE(x,y)∼DI(f(x) 6= y)
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The PAC-Bayes theorem was first proposed by McAllester (2003). The version presented

here is due to Seeger (2002) and Langford (2005).

Theorem 12. (PAC-Bayes Theorem) Given any space H of classifiers. For any data-

independent prior distribution P over H and for any (possibly data-dependent) posterior

distribution Q over H, with probability at least 1− δ over the random draws of training sets

S of m examples:

kl(RS(GQ)‖R(GQ)) ≤ KL(Q‖P ) + ln m+1
δ

m

where KL(Q‖P ) is the Kullback-Leibler divergence between distributions Q and P :

KL(Q‖P )
def
= Eh∼Q ln

Q(h)

P (h)

and where kl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distributions with

probabilities of success q and p (p, q ∈ [0, 1]):

kl(q‖p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p
.

We, however, do not present the proof for the above bound. Please refer to (McAllester,

2003, Seeger, 2002, Langford, 2005) for details of the proof.

The bound given by the PAC-Bayes theorem for the risk of Gibbs classifiers can be turned

into a bound for the risk of Bayes classifiers in the following way.

Given a posterior distribution Q, the Bayes classifier BQ performs a majority vote (under

measure Q) of binary classifiers in H. When BQ misclassifies an example x, at least half of

the binary classifiers (under measure Q) misclassifies x. It follows that the error rate of GQ

is at least half of the error rate of BQ. Hence R(BQ) ≤ 2R(GQ).

3.9 Concluding Remarks

In this chapter we have provided an introduction to statistical learning theory focusing on the

mathematical learning models. We have presented uniform risk bounds for the generalization

ability of learning algorithms in various models. We have tried to present these bounds in

a general form where the learner is allowed to make some error on training data if better

generalization can be obtained. These bounds form the basis of the theoretical analysis of

various approaches in our work. Most of the bounds are derived from the generic bound

structure presented in this chapter.
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3.10 Bibliographical Notes

In addition to the references cited in the text of the PAC learning section, details on the

criticisms of the PAC model and the approaches to address these criticisms can be found in

(Buntine, 1990, Sarrett and Pazzani, 1992, Amsterdam, 1988, Bergadano and Saitta, 1989,

Venkatesh, 1991). Refer to Kearns & Vazirani (1994) and Haussler (1992) for a detailed

discussion of PAC learning. A Bayesian extension of the PAC model can be found in (Bun-

tine, 1990). Haussler (1992) also discusses these issues in further detail. Also see the work

by Dhagat and Hellerstein (1994) on PAC learning with irrelevant attributes for learning

decision lists. Also see (Rivest, 1987). Another approach on obtaining a PAC-style bound

on the generalization error of learning algorithms using their stability properties can be

found in (Bousquet and Elisseeff, 2001). Pitt and Warmuth (1990) discuss the methods for

determining the PAC learnability of concepts classes. See (Vapnik and Chervonenkis, 1971,

Blumer et. al., 1989, Floyd and Warmuth, 1995, Vapnik, 1998) for details on VC dimension.

See (Burges, 1998) for a study of the VC dimension of SVMs by computing VC dimension

for homogenous polynomial and gaussian radial basis function kernels. Also see (Herbrich,

2002, Sontag , 1998) for survey on VC dimension.

Strong results have been obtained for Occam learning. See, for example, (Haussler, 1988)

for an algorithm for learning conjunction with few relevant literals. The topic of learning

in presence of many irrelevant variables has been explored by Littlestone (1988, 1989) and

Blum (1992). Rivest (1987) describes an algorithm to PAC learn decision lists using Occam’s

Razor approach.

For further relationships between the PAC and Occam algorithms, see the work by

Schapire (1990, 1992), Freund (1990, 1992) and Helmbold and Warmuth (1992). Other

variants of the PAC model using the Occam approach are explored by: Angluin and Laird

(1988), Kearns and Li (1993), Kearns (1990) (learning in presence of errors); Kearns and

Schapire (1990) Schapire (1992) (learning probabilistic concepts); Natarajan (1993) (func-

tion learning). Evans, Rajagopalan and Vazirani (1993) give a Bayesian interpretation to

the Minimum Description Length (MDL) principle using a generalized version of Occam

algorithm. Another representation independent version of Occam’s Razor theorem making

use of Kolmogorov Complexity can be found in the paper by Li, Tromp and Vitányi (2003).

Some of the recent textbooks and surveys on statistical learning theory include: Herbrich

(2002), Schölkopf and Smola (2002), Mendelson (2003, 2004), Bousquet, Boucheron and

Lugosi (2004). For some interesting results in the field of sample compression, see (Marchand

and Shawe-Taylor, 2001, 2002) and (Marchand et. al., 2003) for the generalization bounds
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for SCM with data-dependent features. We present somewhat different versions of these

bounds in the following chapters. See also (Floyd and Warmuth, 1995) and (Ben-David and

Litman, 1998). Refer Langford (2005) for a tutorial on prediction theory and variants of

various generalization error bounds based on the binomial tail inversion.

Interesting results have been obtained for PAC-Bayes bounds under various settings. See

for instance (Graepel, Herbrich, and Shawe-Taylor, 2005) for PAC-Bayes compression bounds

on linear classifiers. Marchand and Shah (2005) obtains PAC-Bayes bounds on conjunction

(or disjunction) of linear threshold features on individual attributes. Also see (Laviolette

and Marchand, 2005) for PAC-Bayes bounds on sample compressed Gibbs classifiers.



CHAPTER 4

The Set Covering Machine

This chapter presents an overview of the original Set Covering Machine algorithm proposed by Marc-

hand and Shawe-Taylor (2001, 2002), along with the initially proposed set of features called data-

dependent balls. The SCM framework forms the basis of our work in future chapters

4.1 Introduction

The algorithms and results that we present throughout this work use the generic Set Covering

Machine framework as a basis. The Set Covering Machine (SCM) algorithm was proposed

by Marchand and Shawe-Taylor (2001, 2002). In this chapter we provide a brief description

of the generic algorithm along with a set of features called data-dependent balls introduced

by Marchand and Shawe-Taylor (2001). We will also give a generalization error bound for

the SCM with this set of features.

The SCM algorithm was motivated originally by the idea of learning a conjunction (or dis-

junction) of monomials via the Standard Monomial Learning algorithm proposed by Valiant

(1984). The idea stemmed from the Combinatorial optimization approach used by Haussler

(1988) to deal with the problem where it was shown that this problem could be reduced to the

Minimum Set Cover problem which, although NP-hard, has a good worst-case lower bound

for greedy heuristic (Chvátal, 1979). Motivated by this observation Marchand and Shawe-

Taylor (2001, 2002) generalized this algorithm for learning conjunctions (or disjunctions)

of Boolean attributes to the case of learning these functions over arbitrary sets of Boolean

valued features. Moreover, this approach was extended so as to include the features that

are data-dependent, i.e. constructed from data. Also, the algorithm provides some learning

parameters to control the tradeoff between the accuracy and the size of the conjunction (or

disjunction) so as to deal with the problems of noisy data and overfitting.

42
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4.2 Formalization of the SCM Algorithm

Let x denote an arbitrary n-dimensional vector of the input space X which could be arbitrary

subsets of Rn. We consider binary classification problems for which the training set S = P∪N

consists of a set P of positive training examples and a set N of negative training examples.

A feature is defined as an arbitrary Boolean-valued function that maps X onto {0, 1}.
Let z = {hi(x)}|z|i=1 be any set of features hi(x). The learning algorithm when given any

such set z return a small subset R ⊂ z of features. Given this subset R and an arbitrary

input vector x, the output f(x) of the SCM is defined to be:

f(x) =

{ ∨
i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction

We will follow the following definition for consistency given by Marchand and Shawe-Taylor

(2002) throughout this thesis:

Definition 13. A function (or a feature) is said to be consistent with an example if it

correctly classifies that example. Similarly, a function (or a feature) is said to be consistent

with a set of examples if it correctly classifies all the examples in that set.

To discuss both the conjunction and the disjunction cases simultaneously, let us use P to

denote the set P in the conjunction case but the set N in the disjunction case. Similarly, N
denotes the set N in the conjunction case but denotes the set P in the disjunction case. It

then follows that f makes no error on P iff each hi ∈ R makes no error on P . Moreover, if

Qi denotes the subset of examples of N on which feature hi makes no errors, then f makes

no error on N if and only if
⋃

i∈R Qi = N . Hence, as was first observed by Haussler (1988),

the problem of finding the smallest set R for which f makes no training errors is just the

problem of finding the smallest collection of Qis that cover all N (where each corresponding

hi makes no error on P). This is the well-known Minimum Set Cover Problem (Garey &

Johnson, 1979). The interesting fact is that, although it is NP -complete to find the smallest

cover, the set covering greedy algorithm will always find a cover of size at most z ln(|N |)
when the smallest cover that exists is of size z (Chvátal, 1979, Kearns & Vazirani, 1994).

Moreover this algorithm is very simple to implement and just consists of the following steps:

first choose the set Qi which covers the largest number of elements in N , remove from N
and each Qj the elements that are in Qi, then repeat this process of finding the set Qk of

largest cardinality and updating N and each Qj until there are no more elements in N .

The SCM built on the features found by the set covering greedy algorithm will make no

training errors only when there exists a subset E ⊂ z of features on which a conjunction (or
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a disjunction) makes zero training error. However, this constraint is not really required in

practice since we do want to permit the user of a learning algorithm to control the tradeoff

between the accuracy achieved on the training data and the complexity (here the size) of

the classifier. Indeed, a small SCM which makes a few errors on the training set might give

better generalization than a larger SCM (with more features) which makes zero training

errors. One way to include this flexibility into the SCM is to stop the set covering greedy

algorithm when there remains a few more training examples to be covered. In this case, the

SCM will contain fewer features and will make errors on those training examples that are not

covered. But these examples all belong to N and, in general, we do need to be able to make

errors on training examples of both classes. Hence, early stopping is generally not sufficient

and, in addition, we need to consider features that also make some errors with P provided

that many more examples in N can be covered. Hence, for a feature h, let us denote by Qh

the set of examples in N covered by feature h and by Rh the set of examples in P on which

h makes an error. Given that each example in P misclassified by h should decrease by some

fixed penalty p its “importance”, the usefulness Uh of feature h is defined by the following

equation:

Uh
def
= |Qh| − p · |Rh|

Hence, the set covering greedy algorithm is modified in the following way. Instead of

using the feature that covers the largest number of examples in N , the feature h ∈ z that

has the highest usefulness value Uh is used. We remove from N and each Qg (for g 6= h)

the elements that are in Qh and we remove from each Rg (for g 6= h) the elements that are

in Rh. Note that we update each such set Rg because a feature g that makes an error on

an example in P does not increase the error of the machine if another feature h is already

making an error on that example. We repeat this process of finding the feature h of largest

usefulness Uh and updating N , and each Qg and Rg, until only a few elements remain in N
(early stopping the greedy).

4.3 Data-dependent Balls

Marchand and Shawe-Taylor (2001, 2002) gave an implementation of the SCM algorithm

with a set of features they called data-dependent balls and proposed a risk bound for SCM

with this set of features. For the case of data-dependent balls , each feature is identified by

a training example, called a center (xc, yc), and a radius ρ. Given any metric d, the output
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h(x) on any input example x of such a feature is given by:

h(x) =

{
yc if d(x,xc) ≤ ρ

−yc otherwise

Marchand and Shawe-Taylor (2002) have proposed to use another training example xb,

called a border point, to code for the radius so that ρ = d(xc,xb).

4.3.1 Generalization Error Bound

Let us bound the generalization error of SCM with data-dependent balls. Note that data-

dependent sample compression based bounds probably best reflect the nature of the learning

algorithm in this case as opposed to data-independent bounds such as the VC bounds. Hence,

we use the generic message dependent sample compression risk bound of Chapter 3 to bound

the generalization performance of the SCM algorithm.

Given a compression set zi of size |i|, if the classifier makes |j| errors on the training set

S of m examples, the sample compression theorem (Theorem 11) states the following:

Sample Compression Theorem. For any sample compression learning algorithm with

a reconstruction function R that maps arbitrary subsets of a training set and information

messages to classifiers:

PZm {∀i ∈ I, σ ∈M(Zi) : R(R(σ,Zi)) ≤ ε(σ,Zi, |j|)} ≥ 1− δ

where

ε(σ,Zi, |j|) = 1− exp

( −1

m− |i| − |j|
[
ln

(
m

|i|
)

+ ln

(
m− |i|
|j|

)
+ ln

(
1

PM(Zi)(σ)

)
+

ln

(
1

ζ(|i|)ζ(|j|)δ
)])

and

ζ(a)
def
=

6

π2
(a + 1)−2

In the case of data-dependent balls the compression set consists of examples denoting

the centers and borders of the balls. Now, given a compression set zi, we need to specify the

examples in zi that are used for a border point without being used as a center. As explained

by Marchand and Shawe-Taylor (2002), no additional amount of information is required to

pair each center with its border point whenever the reconstruction function R is constrained

to produce a classifier that always correctly classifies the compression set. Furthermore, as
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argued by Marchand and Shawe-Taylor (2002), we can limit ourselves to the case where

each border point is a positive example. In that case, each message σ ∈ M(zi) just needs

to specify the positive examples that are a border point without being a center. Let n(zi)

and p(zi) be, respectively, the number of negative and the number of positive examples in

compression set zi. Let b(σ) be the number of border point examples specified in message σ

and let ζ(a) be defined by Equation 3.11. We can then use:

PM(Zi)(σ) = ζ(b(σ)) ·
(

p(zi)

b(σ)

)−1

since, in that case, we have for any compression set zi:

∑

σ∈M(zi)

PM(zi)(σ) =

p(zi)∑

b=0

ζ(b)
∑

σ:b(σ)=b

(
p(zi)

b(σ)

)−1

≤ 1

This distribution of messages along with the Sample Compression Theorem provides a

bound on generalization error. Note that by
(

a
b

)−1
, we mean 1

(a
b)

.

4.4 The SCM Algorithm: Formal Outline

We conclude this chapter with the formal description of the SCM learning algorithm. The

penalty p and the early stopping point s are the two model-selection parameters that give

the user the ability to control the proper tradeoff between the training accuracy and the size

of the function. Their values could be determined either by using k-fold cross-validation, or

by computing the bound on the generalization error based on what has been achieved on

the training data. See (Marchand and Shawe-Taylor, 2001, 2002) for the implementation of

SCM with data-dependent features called generalized balls and the results of model selection

using the generalization bound obtained with respect to this set of features. We propose an

alternate set of features and generalization error bound in Chapter 5. Note that the learning

algorithm reduces to the two-step algorithm of Valiant (1984) and Haussler (1988) when

both s and p are infinite and when the set of features consists of the set of input attributes

and their negations.

The pseudocode on the next page gives the outline of the SCM algorithm of any arbitrary

set of, possibly data-dependent, features. The algorithm is called BuildSCM and we will

be referring to this base learning algorithm in the coming chapters by this name.
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Algorithm BuildSCM(T, P,N, p, s,z)

Input: A machine type T (which is either “conjunction” or “disjunction”), a set P of posi-

tive training examples, a set N of negative training examples, a penalty value p, a stopping

point s, and a set z = {hi(x)}|z|i=1 of Boolean-valued features.

Output: A conjunction (or disjunction) f(x) of a subset R ⊆ z of features.

Initialization: R = ∅.

1. If (T = “conjunction”) let P ← P and N ← N .

Else let P ← N and let N ← P .

2. For each hi ∈ z, let Qi be the subset of N covered by hi and let Ri be the subset of

P covered by hi (i.e. examples in P incorrectly classified by hi).

3. Let hk be a feature with the largest value of |Qk| − p · |Rk|. If (|Qk| = 0) then go to

step 7 (cannot cover the remaining examples in N ).

4. Let R← R∪ {hk}. Let N ← N −Qk and let P ← P −Rk.

5. For all i do: Qi ← Qi −Qk and Ri ← Ri −Rk.

6. If (N = ∅ or |R| ≥ s) then go to step 7 (no more examples to cover or early stopping).

Else go to step 3.

7. Return f(x) where:

f(x) =

{ ∨
i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction



CHAPTER 5

The SCM with Data-Dependent Halfspaces

In this chapter we present an alternate set of features for the Set Covering Machine called the data-

dependent Half-spaces and also present a tight sample compression risk bound. We show that this

set of features is indeed sometimes better than data-dependent balls and yields sparser classifiers

with better classification accuracies. These results in part appeared in:

M. Marchand, M. Shah, J. Shawe-Taylor and M. Sokolova. The Set Covering Machine with Data-

dependent Half-Spaces. Proceedings of the Twentieth International Conference on Machine Learn-

ing (ICML’2003), 520–527, Morgan Kaufmann, San Fransisco, CA, 2003.

5.1 Introduction

We discussed the sample compression based SCM framework in Chapter 4 along with the

initial set of features called data-dependent balls proposed by Marchand and Shawe-Taylor

(2001, 2002). The SCM with data-dependent balls showed encouraging results especially

in terms of sparsity. The SCM aims at maximizing sparsity (i.e. using minimum possible

number of examples to represent the classifier) in contrast to the Support Vector Machine

(SVM) that aims at maximizing the (soft-) margin of the separating hyperplane (in the

feature space). Hence, the SCM can be the algorithm of choice when the objective is to

find a sparse classifier. Recall that for the set of features known as data-dependent balls ,

Marchand and Shawe-Taylor (2001, 2002) have shown that good generalization is expected

when a SCM with a small number of balls and errors can be found on the training data.

Furthermore, on some real world data sets, they have found that the SCM achieves a much

higher level of sparsity than an SVM with roughly the same generalization error.

The question however is whether the SCM framework is general enough. Can we move

beyond the data-dependent balls as the features? Can an alternate set of features provide

yet sparser and general solutions? This is precisely our focus in this chapter.

In this chapter, we introduce a new set of features for the SCM that we call data-

dependent half-spaces . Since our goal is to construct sparse classifiers, we want to avoid

using O(d) examples to construct each half-space in a d-dimensional input space (like many

48
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computational geometric algorithms). Rather, we want to use O(1) examples for each half-

space. In fact, we will see that by using only three examples per half-space, we need very

few of these half-spaces to achieve a generalization as good as (and sometimes better than)

the SVM on many “natural” data sets. Moreover, the level of sparsity achieved by the SCM

is always substantially superior (sometimes by a factor of at least 50) than the one achieved

by the SVM.

Finally, by extending the sample compression technique of Littlestone and Warmuth

(1986), we bound the generalization error of the SCM with data-dependent half-spaces in

terms of the number of errors and the number of half-spaces it achieves on the training data.

Throughout the chapter, we use the term BuildSCM to denote the general SCM algorithm

introduced in Chapter 4. We also adhere to the same notation for the various parameters

such as the penalty and size and the utility function, as in Chapter 4.

5.2 Data-Dependent Half-Spaces

With the use of kernels, each input vector x is implicitly mapped into a high-dimensional

vector φφφ(x) such that φφφ(x) · φφφ(x′) = k(x,x′) (the kernel trick). We consider the case where

each feature is a half-space constructed from a set of 3 points {φφφa,φφφb,φφφc} where φφφa is the

image of a positive example xa, φφφb is the image of a negative example xb, and φφφc is the

image of a P-example xc. We described the P-examples in Chapter 4. Simply stated, P
denotes the set P in the conjunction case while it denotes the set N in the disjunction case.

The weight vector w of such an half-space hc
a,b is defined by w

def
= φφφa − φφφb and its threshold

t is identified by t
def
= w · φφφc − ε, where ε is a small positive real number in the case of a

conjunction but a small negative number in the case of a disjunction. Hence,

hc
a,b(x)

def
= sgn{w · φφφ(x)− t}
= sgn{k(xa,x)− k(xb,x)− t}

where

t = k(xa,xc)− k(xb,xc)− ε.

When the penalty parameter p is set to∞, BuildSCM tries to cover with half-spaces the

examples of N without making any error on the examples of P . In that case, φφφc is the image

of the example xc ∈ P that gives the smallest value of w ·φφφ(xc) in the case of a conjunction

(but the largest value of w · φφφ(xc) in the case of a disjunction). Note that, in contrast with
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data-dependent balls (Marchand and Shawe-Taylor, 2002), we are not guaranteed to always

be able to cover all N with such half-spaces. When training a SCM with finite p, any xc ∈ P
might give the best threshold for a given (xa,xb) pair. Hence, to find the half-space that

maximizes the utility function Uh (described in Chapter 4), we need to compute Uh for every

triple (xa,xb,xc).

Note that this set of features (in the linear kernel case k(x,x′) = x · x′) was already

proposed by Hinton & Revow (1996) for decision tree learning but no analysis of their

learning method has been given.

5.3 Bound on the Generalization Error

We now bound the generalization performance of the SCM algorithm when it uses the data-

dependent halfspaces as the features. We derive a risk bound that depends on the number

of examples in the compression set and the size of the information message needed to re-

construct the final classifier from this compression set. Our bound is built on the generic

sample compression bound that we obtained in Section 3.7 (Theorem 11). We re-state the

generic bound first and then adapt it to the case of SCM with data-dependent Half-spaces:

Sample Compression Theorem. For any sample compression learning algorithm with

a reconstruction function R that maps arbitrary subsets of a training set and information

messages to classifiers:

PZm {∀i ∈ I, σ ∈M(Zi) : R(R(σ,Zi)) ≤ ε(σ,Zi, |j|)} ≥ 1− δ

where

ε(σ,Zi, |j|) = 1− exp

( −1

m− |i| − |j|
[
ln

(
m

|i|
)

+ ln

(
m− |i|
|j|

)
+ ln

(
1

PM(Zi)(σ)

)
+

ln

(
1

ζ(|i|)ζ(|j|)δ
)])

(5.1)

and ζ is defined by Equation 3.11.

Now, we need to specify the distribution of messages for the Half-spaces. This is the

term PM(Zi)(σ) in Equation 5.1.

5.3.1 Bound for SCM with Halfspaces

In order to obtain the distribution of messages PM(zi)(σ) for data-dependent halfspaces, we

need to construct a message string σ that identifies, from zi, the weight vector and threshold
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of each half-space. We know that each weight vector w is specified by a pair (xa,xb) of

examples, taken from zi. Note that the examples xa and xb having opposite class labels.

We denote by p(zi) and n(zi), the number of positive and the number of negative examples

in the compression set zi respectively. The set of positive examples in the compression set

is denoted by P (zi) and the set of negative examples in the compression set is denoted

by N(zi). Now, each example in the compression set zi can participate in multiple weight

vectors. However, under the constraint that each example in zi is correctly classified, each

pair (xa,xb) ∈ P (zi) × N(zi) can provide at most one weight vector. Also, the pairs of

examples identifying the weight vector cannot be used in reverse. That is, the pair (xj,xi)

cannot be used to represent a weight vector when the pair (xi,xj) is already used. Hence, in

order to identify r(zi) weight vectors we need two things: First, we need a string that specifies

the number of weight vectors, i.e. r(zi) pairs among all the possible p(zi)n(zi) pairs, and

second, a string that each specifies the order of each pair (xi,xj), if we use w = φφφ(xi)−φφφ(xj).

Let us denote by σ1 the string that specifies the number of weight vectors r(zi) in the

compression set zi. We assign a uniform probability over the number of weight vectors in

the compression set. Hence, the string σ1 can take a value between 0 and p(zi)n(zi) with

equal probability. Hence:

P1(σ1) =
1

p(zi)n(zi) + 1
∀σ1

Now, we denote by σ2 the string used to specify each of the r(zi) weight vectors in accordance

with our scheme. Again, we assign an equal probability over each possible choice of the pair

of examples forming the weight vector. This yields:

P2(σ2|σ1) =

(
p(zi)n(zi)

r(zi)

)−1

∀σ2

We do not need any additional message string to identify the threshold point xc ∈ zi for

each weight vector w. We can just perform the following procedure for the task: Let P

and N denote the set of positive and negative examples in the compression set zi. We

start with P ′ = P, N ′ = N and repeat the following steps from the first half-space until

we discover all the half-spaces. Let w = φφφ(xa) − φφφ(xb) be the weight vector of the current

half-space. If xa ∈ P , then for the example identifying the threshold point xc, we choose

xc = argmax
x∈N ′

w · x and we remove xa from P ′ (to find the thresholds of the other weight

vectors). Otherwise, if xa ∈ N , then, for the example identifying the threshold point xc, we

choose xc = argmax
x∈P ′

w · x and we remove xa from N ′.
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Hence, we get the following distribution for the message strings:

PM(zi)(σ) =
1

p(zi)n(zi) + 1
·
(

p(zi)n(zi)

r(zi)

)−1

∀σ (5.2)

The bound over the SCM with data-dependent halfspaces can be obtained now by re-

placing the value of PM(zi)(σ) in Equation 5.1 by the one obtained from Equation 5.2 and

subsequently substituting Equation 5.1 in the Sample Compression Theorem.

5.4 Empirical Results on Natural data

We have compared the practical performance of the SCM with the Support Vector Machine

(SVM) equipped with a Gaussian kernel (also called the Radial Basis Function kernel) of

variance 1/γ and soft margin parameter C. Each SCM algorithm used the L2 metric since

this is the metric present in the argument of the RBF kernel.

The data sets used and the results obtained are reported in Tables 5.1 and 5.2. Each

data set was randomly split in two parts. About half of the examples was used for training

and the remaining set of examples was used for testing. The corresponding values for these

numbers of examples are given in the “train” and “test” columns of each table. The learning

parameters of all algorithms were determined from the training set only. The parameters C

and γ for the SVM were determined by the 5-fold cross validation (CV) method performed

on the training set. The parameters that gave the smallest 5-fold CV error were then used

to train the SVM on the whole training set and the resulting classifier was then run on the

testing set. Exactly the same method (with the same 5-fold split) was used to determine

the learning parameters of both SCM with balls and SCM with half-spaces. These results

are provided in Table 5.1 (SVM errs and SCM-cv, “errs” column under SCM Half-spaces

(CV)) and Table 5.2. In addition to this, we have compared this 5-fold CV model selection

method with a model selection method that uses the risk bound of the Sample Compression

Theorem with Equation 5.2 to select the best SCM classifier obtained from the same possible

choices of the learning parameters that we have used for the 5-fold CV method. The SCM

that minimizes the risk bound (computed from the training set) was then run on the testing

set. Similar model selection from bound is performed on SCM with balls (with message

distribution given in Chapter 4. These results are provided in Table 5.1 (SCM-b and “errs”

column under SCM Half-spaces (Bound)) and Table 5.2.

The “SVs” column of the SVM results refers to the number of support vectors present

in the final classifier. The “errs” column, for all learning algorithms, refers to the number of
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Table 5.1: Results of SVM and SCM with Balls on UCI Datasets.

Data Set SVM results SCM-cv SCM-b

Name train test C γ SVs errs s errs s errs

breastw 343 340 1 0.1 38 15 2 11 1 12

bupa 170 175 2 3.0 169 66 2 71 2 70

credit 353 300 100 0.25 282 51 12 65 1 57

glass 107 107 10 3.0 51 29 4 20 4 19

haberman 144 150 2 0.5 81 39 2 41 1 39

heart 150 147 1 3.0 64 26 1 28 1 23

pima 400 368 0.5 0.02 241 96 1 108 1 105

USvotes 235 200 1 0.02 53 13 8 26 3 19

Table 5.2: Results for SCM with Half-Spaces on UCI Datasets.

Data Set SCM Half-spaces(CV) SCM Half-spaces(Bound)

Name train test T P s errs T P s errs

breastw 343 340 d 0.5 1 14 d 0.5 1 14

bupa 170 175 c 0.5 1 51 c 0.5 1 51

credit 353 300 c 2 1 44 c 1 1 47

glass 107 107 c 3.5 4 21 c 1.5 2 20

haberman 144 150 c 1.5 1 42 c 1.5 1 42

heart 150 147 d 2 1 29 d 1 1 29

pima 400 368 c 1.5 9 103 c 1 7 103

USvotes 235 200 c 10 3 21 c 1 1 10

classification errors obtained on the testing set. The “s” column in each table corresponds

to the size of the classifier (i.e. number of balls in case of Table 5.1 and number of halfspaces

in Table 5.2. Moreover, the columns “T” and “P” in Table 5.2 refer to the machine type

(conjunction or disjunction) and the penalty values respectively.

The most striking feature in Table 5.2 is the level of sparsity achieved by the SCM in

comparison with the SVM. This difference is huge. In particular, the SCMs with half-spaces

never contained more than 4 half-spaces (i.e. a compression set of at most 12 points), except

for pima (9 half-spaces, or 27 points). The other important feature is that SCMs with half-

spaces often provide better generalization than SCMs with balls and SVMs. The difference

is substantial on the Credit data set. Hence it is quite clear that data-dependent half-spaces

provide an alternative to data-dependent balls for the set of features used by the SCM.
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Moreover, the bound that we have obtained is also successful at guiding the model selection.

Note how we find better results for model selection from the bound in Table 5.2, especially

on USvotes. However, the price to pay for this better performance is the extra computation

time1 since triples of points needs to be examined to find a half-space but only pairs of points

need to be considered for balls (Marchand and Shawe-Taylor, 2001).

5.5 Time Complexity Analysis

Let us consider the running time for this algorithm in the conjunction case: For fixed p, we

consider every weight vector consisting of a positive-negative example pair. For each weight

vector, we sort the examples according to their inner products (possibly kernelized) with the

weight vector in O(m log m) time. Moreover, computing the utility of each potential half-

space resulting from a weight vector takes O(m) time. Taking into account all the possible

pairs of examples that can become potential weight vectors, it takes O(m3 log m) time to find

the best half-space. We then remove the examples covered by this half-space and repeat the

algorithm. It is well known that greedy algorithms of this kind have the following guarantee:

if there exist r half-spaces that covers all the m examples, the greedy algorithm will find at

most r ln(m) half-spaces. Since we almost always have r ∈ O(1), the running time of the

whole algorithm will almost always be ∈ O(m3 log2(m)). However, as mentioned above, the

running time is within acceptable limits in practice.

5.6 Conclusion and Outlook

We have introduced a new set of features for the SCM, called data-dependent half-spaces,

and have shown that it can provide a favorable alternative to data-dependent balls on some

“natural” data sets. Compared with SVMs, our learning algorithm for SCMs with half-

spaces produces substantially sparser classifiers (often by a factor of 50) with comparable,

and sometimes better, generalization.

By extending the sample compression technique of Littlestone and Warmuth (1986), we

have bound the generalization error of the SCM with data-dependent half-spaces in terms

of the number of errors and the number of half-spaces it achieves on the training data. Our

bound indicates that good generalization error is expected whenever a SCM, with a small

1Note that this is still within acceptable bounds. E.g., it takes less than 20 seconds on a 1.6 GHz PC to

train once the SCM with half-spaces on the BreastW data set.
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number of half-spaces, makes few training errors. Moreover, our bound is tight enough

to perform model selection, hence, providing an alternative to the costly cross validation

method. Note, however, that our bound applies only to the case of symmetric loss. It would

be interesting to generalize this bound to the case of asymmetric loss (which frequently

occurs in practice).



CHAPTER 6

Learning the Conjunction of Rays

This chapter proposes two “purist” approaches of learning conjunction or disjunction of simple

threshold features called Rays, viz. a Sample Compression based approach and an Occam Razor

based approach. We also present corresponding risk bounds in each case. We show how the ap-

proaches can perform an implicit feature selection to represent classifier with a very small number

of attributes in the case of DNA micro-array data. This chapter also shows how these approaches

are limited in their classification and generalization performance by focusing solely on sparsity. The

next chapter presents an improved version for learning from Rays.

6.1 Introduction

We demonstrated in the last chapter how an alternate set of features can give better gen-

eralization as well as sparser solutions in the SCM scenario. Let us see if we can take this

a step further, to the case of high dimensional data. More specifically, we examine how

can we adapt the SCM for classifying gene-expression data obtained from DNA micro-array

experiments. This is a very important problem since it demands addressing not only the

issues such as reliable feature selection and classification accuracy with respect to Machine

Learning, but also has significant biological relevance. If one can find a classifier that de-

pends on a small number of genes and that can accurately predict if a DNA micro-array

sample originates from cancer tissue or normal tissue, then there is hope that these genes,

used by the classifier, may be playing a crucial role in the development of cancer and hence

may be of relevance for future therapies. This, in particular, seems important to devise a

test for the prognosis of patients. The basic idea of our approach stems from being able to

utilize sparsity when obtaining a conjunction of features built on data. So far, we have re-

viewed features that were built on examples (i.e. utilized all the attributes). However, if the

features are built on individual attributes instead, can we build classifiers that are sparse?

Moreover, can these sparse classifiers demonstrate good generalization? Since in this case a

sparse classifier would mean one that utilizes a very small subset of attributes to represent

the hypothesis, hence performing an implicit feature selection. We will see in this chapter

56
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the answer to the first question. It is indeed possible to obtain sparse classifiers utilizing

very few attributes to designate the classifier. We will extend the approaches presented here

with regard to better generalization in the next chapter.

An important challenge in the problem of classification of high-dimensional data is to

design a learning algorithm that can often construct an accurate classifier that depends on

the smallest possible number of attributes. The problem of finding such a small subset of

attributes is often referred to as the problem of feature selection. Reducing the dependence

of the classifier on a small subset of attributes has obvious advantages. First, this helps in

ensuring that the classifier and hence its decision making ability does not depend on the noisy

and/or irrelevant attributes. Second, a sufficiently small subset might help in identifying the

precise classifying behavioral traits. Let us start by briefly reviewing common approaches

adopted for dealing with the feature selection problem.

There are a lot of feature selection methods used for finding a small subset of attributes

so as to be able to classify high-dimensional data. The standard methods can often be

characterized as either “filters” or “wrappers”.

The filter based approaches are based on the idea of removing the most irrelevant at-

tributes from the data prior to learning. A filter is an algorithm used to “filter out” these

irrelevant attributes before using a base learning algorithm, such as the support vector ma-

chine (SVM). Learning algorithms such as the SVM, which was not designed to perform

well in the presence of many irrelevant attributes, have an added advantage with such an

approach.

A wrapper, on the other hand, is used in conjunction with the base learning algorithm:

typically removing recursively the attributes that have received a small “weight” by the

classifier obtained from the base learner. That is, a base learning algorithm is used to learn

from the original dataset and weights are assigned in accordance to the importance of the

attributes. Then a pre-decided fraction of attributes with weights below a certain threshold

are removed from the data. This two-step process is then repeated until the target number

of attributes is reached.

An example of such wrapper based approach would be the recursive feature elimination

method that was used by Guyon et al. (2002) in conjunction with the SVM for classification

of micro-array data. For the same task, Furey et al. (2000) have used a filter which consists of

ranking the attributes (gene expressions) as function of the difference between the positive-

example mean and the negative-example mean.

Both the filter based and wrapper based approaches have sometimes produced good
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empirical results. However, there is an intrinsic problem with these approaches. None of

these two methods have any theoretical justification associated with them. Analytically, it

cannot be shown whether either method will perform well and why. Nor can the bounds

be defined over the generalization performance of such approaches. Also, there are some

other issues. One of the most important issues is deciding what fraction of the attributes

in the original dataset are optimal for the best classification results and more importantly

future generalization. Most approaches use a hit-and-trial strategy in the sense that a near

exhaustive search over the possible subsets of the attributes is performed after which the

subset giving the least empirical error is chosen. However, this criterion is not theoretically

justified. Also, it cannot be guaranteed that this selected subset of the attributes is optimal.

Of course there are other methods such as mixture of the above two strategies, knowledge

based methods and so on. But these method too suffer from the limitations discussed above.

What we really need is a learning algorithm that has provably good guarantees in the

presence of many irrelevant attributes. One of the first learning algorithms proposed by

the COLT community has such a guarantee for the class of conjunctions: if there exists a

conjunction, that depends on r out of the n input attributes and that correctly classifies a

training set of m examples, then the greedy covering algorithm of Haussler (1988) will find

a conjunction of at most r ln m attributes that makes no training errors. Note the absence

of dependence on the number n of input attributes. In contrast, the mistake-bound of the

Winnow algorithm (Littlestone, 1988) has a logarithmic dependence on n and will build a

classifier on all the n attributes.

Our present work is motivated by this theoretical result of being able to find a small subset

of attributes whose conjunction can perform well on the data. Another factor inspiring our

current line of research is the fact that simple conjunctions of gene expression levels seems

an interesting learning bias for the classification of DNA micro-array data.

In this chapter, we examine two simple strategies to building small conjunctions of simple

threshold functions, called rays, defined on single real-valued attributes. Rays can also act

as an alternate set of features in the SCM framework and are apt in the present context

since unlike data-dependent balls and half-spaces, these are built on single attributes. The

first approach that we discuss is an Occam’s razor based approach while the second is a

pure sample compression based approach. Both approaches have commonalities since they

aim at finding the simplest representation of classifier. The former selects the classifier with

a minimum number of bits while the later tries to find the one that is sparsest in terms

of the number of features used. We also provide generalization risk bounds for both the
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learning algorithms. We will see that such “purist” strategies (focussing purely either on

most succinct representation or the sparsest solution) are often not enough to provide good

generalization. Hence, in the next chapter, we will extend the sample compression approach

presented here and show that learning algorithms that can perform a non-trivial trade-off

between the sparsity of the solution and the separating margin of the decision surface can

in fact provide better generalization, both theoretically and empirically.

6.2 Definitions

The input space X consists of all n-dimensional vectors x = (x1, . . . , xn) where each real-

valued component xi ∈ [Ai, Bi] for i = 1, . . . n. Hence, Ai and Bi are, respectively, the a

priori lower and upper bounds on values for xi. The output space Y is the set of classi-

fication labels that can be assigned to any input vector x ∈ X . We focus here on binary

classification problems. Thus Y = {0, 1}. Each example z = (x, y) is an input vector x with

its classification label y ∈ Y .

We focus on learning algorithms that construct a conjunction of rays from a training set.

Each ray is just a threshold classifier defined on a single attribute (component) xk. More

formally, a ray is identified by an attribute index k ∈ {1, . . . , n}, a threshold value t ∈ R, and

a direction d ∈ {−1, +1} (that specifies whether class 1 is on the largest or smallest values

of xk). Given any input example x, the output rk
td(x) of a ray is defined as:

rk
td(x)

def
=

{
1 if (xk − t)d > 0

0 if (xk − t)d ≤ 0

To specify a conjunction of rays we need first to list all the attributes whose rays are

present in the conjunction. For this purpose, we use a vector k
def
= (k1, . . . , k|k|) of attribute

indices kj ∈ {1, . . . , n} such that k1 < k2 < . . . < k|k| where |k| is the number of indices

present in k (and thus the number of rays in the conjunction) 1.

To complete the specification of a conjunction of rays, we need a vector t = (tk1 , tk2 , . . . , tk|k|)

of threshold values and a vector d = (dk1 , dk2 , . . . , dk|k|) of directions where kj ∈ {1, . . . , n}
for j ∈ {1, . . . , |k|}. On any input example x, the output Ck

td(x) of a conjunction of rays is

given by:

Ck
td(x)

def
=

{
1 if rj

tjdj
(x) = 1 ∀j ∈ k

0 if ∃j ∈ k : rj
tjdj

(x) = 0

1Although it is possible to use up to two rays on any attribute, we limit ourselves here to the case where

each attribute can be used for only one ray.
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Finally, any algorithm that builds a conjunction can be used to build a disjunction just

by exchanging the role of the positive and negative labeled examples. In order to keep our

description simple, we describe here only the case of a conjunction. However, the case of

disjunction follows analogically.

6.3 An Occam’s Razor Approach

Our first approach towards learning the conjunction (or disjunction) of Rays is the Occam’s

Razor approach. Basically, we wish to obtain a hypothesis that can be coded using the least

number of bits. We first propose an Occam’s Razor risk bound which will ultimately guide

the learning algorithm.

To obtain the tightest possible risk bound, we fully exploit the fact that the distribution

of classification errors is a binomial. The binomial tail distribution Bin( κ
m

, r) associated with

a classifier of (true) risk r is defined as the probability that this classifier makes at most κ

errors on a test set of m examples:

Bin
( κ

m
, r

)
def
=

κ∑
i=0

(
m

i

)
ri(1− r)m−i

Following Langford (2005) and Blum and Langford (2003), we now define the binomial tail

inversion Bin
(

κ
m

, δ
)

as the largest risk value that a classifier can have while still having a

probability of at least δ of observing at most κ errors out of m examples:

Bin
( κ

m
, δ

)
def
= sup

{
r : Bin

( κ

m
, r

)
≥ δ

}

From this definition, it follows that Bin (RS(f), δ) is the smallest upper bound, which holds

with probability at least 1− δ, on the true risk of any classifier f with an observed empirical

risk RS(f) on a test set of m examples:

∀f : PrS∼Dm

(
R(f) ≤ Bin

(
RS(f), δ

)) ≥ 1− δ

Any bound expressed in terms of the binomial tail inversion can be turned into a more

conventional and looser bound by inverting a standard approximation of the binomial tail

such as those obtained from the inequalities of Chernoff and Hoeffding.

Our starting point is the Occam’s razor bound of Langford (2005) which is a tighter

version of the bound proposed by Blumer et. al. (1987). It is also more general in the sense

that it applies to any prior distribution P over any countable class of classifiers.
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Theorem 14 (Langford (2005)). For any prior distribution P over any countable class

F of classifiers, and for any δ ∈ (0, 1], we have:

PrS∼Dm

{
∀f ∈ F : R(f) ≤ Bin

(
RS(f), P (f)δ

)} ≥ 1− δ

The proof directly follows from a straightforward union bound argument and from the

fact that
∑

f∈F P (f) ≤ 1. To apply this bound for conjunctions of rays we thus need to

choose a suitable prior P for this class.

In our case, we have seen that ray conjunctions are specified in terms of a mixture of

discrete parameters k and d and continuous parameters t. We will see below that we will

use a finite-precision bit string σ to specify the set of threshold values t. Let us denote by

P (k,d, σ) the prior probability assigned to the conjunction Ck
σd described by (k,d, σ). We

choose a prior of the following form:

P (k,d, σ) =
1(
n
|k|

)p(|k|) 1

2|k|
gk,d(σ)

where gk,d(σ) is the prior probability assigned to string σ given that we have chosen k and

d. Let M(k,d) be the set of all message strings that we can use given that we have chosen

k and d. If I denotes the set of all 2n possible attribute index vectors and Dk denotes the

set of all 2|k| binary direction vectors d of dimension |k|, we have that:

∑

k∈I

∑

d∈Dk

∑

σ∈M(k,d)

P (k,d, σ) ≤ 1

whenever
∑n

d=0 p(d) ≤ 1 and
∑

σ∈M(k,d) gk,d(σ) ≤ 1 ∀k,d.

The reasons motivating this choice for the prior are the following. The first two factors

come from the belief that the final classifier, constructed from the group of attributes specified

by k, should depend only on the number |k| of attributes in this group. If we have complete

ignorance about the number of rays the final classifier is likely to have, we should choose

p(d) = 1/(n + 1) for d ∈ {0, 1, . . . , n}. However, we should choose a p that decreases as we

increase d if we have reasons to believe that the number of rays of the final classifier will be

much smaller than n. Since this is usually our case, we propose to use:

p(|k|) =
6

π2
(|k|+ 1)−2

The third factor of P (k,d, σ) gives equal prior probabilities for each of the two possible

values of direction dj.

To specify the distribution of strings gk,d(σ), consider the problem of coding a threshold

value t ∈ [a, b] ⊂ [A,B] where [A, B] is some predefined interval in which we are permitted to
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choose t and where [a, b] is an interval of “equally good” threshold values.2 We propose the

following diadic coding scheme for the identification of a threshold value that belongs to that

interval. Let l be the number of bits that we use for the code. We adopt the convention that

a code of l = 0 bits specifies the threshold value (A+B)/2. A code of l = 1 bit either specifies

the value (3A+B)/4 (when the bit is 0) or the value (A+3B)/4 (when the bit is 1). A code of

l = 2 specifies one of the following values: (7A+B)/8, (5A+3B)/8, (3A+5B)/8, (A+7B)/8.

Hence, a code of l bits specifies one value among the set Λl of threshold values:

Λl
def
=

{[
1− 2j − 1

2l+1

]
A +

2j − 1

2l+1
B

}2l

j=1

Given an interval [a, b] ⊂ [A,B] of threshold values, we take the smallest number l of bits

such that there exists a threshold value in Λl that falls in the interval [a, b]. In that way, we

will need at most blog2((B−A)/(b− a))c bits to obtain a threshold value that falls in [a, b].

Hence, to specify the threshold for each ray, we need to specify the number l of bits and

a l-bit string s that identifies one of the threshold values in Λl. We also need to specify an

interval [A,B] of permitted values for t. For this we propose the following scheme. We start

with an interval [A∗, B∗] specified by the nature of the attribute (before examining any value

that this attribute takes on the training set). Typically A∗ and B∗ would respectively be

the smallest and the largest value that this attribute can possibly have from the attribute’s

definition. Let C∗ = (A∗ + B∗)/2. We then compute the smallest value A′ and the largest

value B′ that this attribute takes on the training set. Then we find the largest integer κ such

that 2−κ(C∗ − A∗) ≥ (C∗ − A′). Then we choose A such that C∗ − A = 2−κ(C∗ − A∗) for

that value of κ. Similarly, we find the largest integer κ′ such that 2−κ′(B∗−C∗) ≥ (B′−C∗).

Then we choose B such that B − C∗ = 2−κ′(B∗ − C∗) for that value of κ′. After choosing,

in this way, [Ai, Bi] for each attribute i we perform a first run of the learning algorithm

(described below). The we rerun the algorithm by halving again each interval [Ai, Bi] and

repeat until the risk bound (given by our next theorem) of the classifier becomes very large.

Therefore, the message string σ that we use for any choice of k consists of that pair

of numbers κi and κ′i that we have just defined and the pair (li, si) of numbers needed to

identify the threshold for each attribute i ∈ k. The risk bound does not depend on how we

actually code σ (for some receiver). It only depends on the a priori probabilities we assign

2By a “good” threshold value, we mean a threshold value for a ray that would cover many negative

examples and very few positive examples (see the learning algorithm).
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to each possible realization of σ. We choose the following distribution:

gk,d(σ)
def
= gk,d(κ1, κ

′
1, l1, s1, . . . , κ|k|, κ

′
|k|, l|k|, s|k|) =

∏

i∈k

ζ(κi)ζ(κ′i)ζ(li) · 2−li (6.1)

where : ζ(a)
def
=

6

π2
(a + 1)−2 ∀a ∈ N

The sum over all the possible realizations of σ gives 1 since
∑∞

i=1 i−2 = π2/6. Note that

by giving equal a priori probability to each of the 2li strings si of length li, we give no

preference to any threshold value in Λli once we have chosen an interval [Ai, Bi] that we

believe is appropriate.

Alternatively, for homogeneous systems where each attribute has the same definition, we

could use the same interval value [A,B] for each attribute. In that case, gk,d(σ) would be

defined with only one κ and one κ′ instead |k| pairs of parameters κi, κ
′
i.

The distribution ζ that we have chosen for each string length li has the advantage of

decreasing slowly so that the risk bound does not deteriorate to rapidly as li increases.

Other choices are clearly possible.

With this choice of prior, we have the following theorem:

Theorem 15. Given all our previous definitions and for any δ ∈ (0, 1], we have:

PrS∼Dm

{
∀k,d, σ : R(Ck

σd) ≤ Bin

(
RS(Ck

σd),
p(|k|)gk,d(σ)δ(

n
|k|

)
2|k|

)}
≥ 1− δ

Finally, we emphasize that the risk bound of Theorem 15, used in conjunction with the

distribution of messages given by gk,d(σ), provides a guide for choosing the appropriate

tradeoff between sparsity (the number of rays) and the code (the length of the message

string). Indeed, the risk bound for a conjunction with a decision surface having a small

coding string (small lis) may be smaller than the risk bound of a sparser conjunction having

a large coding string (larger lis).

6.3.1 The Occam’s Razor Learning Algorithm

Ideally, we would like to find a conjunction of rays that minimizes the risk bound of Theo-

rem 15 with the distribution given by gk,d(σ). Unfortunately, this cannot be done efficiently

in all cases since this problem is at least as hard as the (NP-complete) minimum set cover

problem (Marchand and Shawe-Taylor, 2002). The simple set covering greedy heuristic has,

however, a good guarantee in the case where there exists a small conjunction that makes

zero training errors. It simply consists of using a ray that covers the largest number of neg-

ative examples (without making any errors on the positives), remove these negative covered
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examples and repeat until all the negative examples are covered.3 Here, however, we want

to modify this heuristic by incorporating the possibility of making training errors if the final

classifier is much smaller. In addition, we want to give preference to rays having a threshold

coded with a small number of bits. Hence, we modify the greedy heuristic in the following

way.

Let N be the set of negative examples and P be the set of positive examples. We start

with N ′ = N and P ′ = P . Let Qi be the subset of N ′ covered by ray i, let Ri be the subset

of P ′ covered by ray i, and let li be the number of bits used to code the threshold of ray i.

We choose the ray i that maximizes the utility Ui defined as:

Ui
def
=

|Qi|
N ′ − p

|Ri|
P

− η · li

where p is the penalty suffered by covering (and hence, misclassifying) a positive example

and η is the cost of using li bits for ray i. Once we have found a ray maximizing Ui, we

update N ′ = N ′ −Qi and P ′ = P ′ − Ri and repeat to find the next ray until either N ′ = ∅
or the maximum number v of rays has been reached (early stopping the greedy). Hence,

p, η, and v are the three “learning parameters” that our heuristic uses to generate a set of

classifiers. At the end, we use the bound of Theorem 15 to select the best classifier. Another

alternative is to determine the best values for p, η, and v by cross-validation.

For each choice of (p, η, v), the learner examines, for each ray, all the threshold values

that can be coded with l bits with our scheme. Since it takes O(log((B − A)/(b− a))) bits

to obtain a threshold value that falls in [a, b] and since there exists intervals [a, b] such that

(B − A)/(b − a) ≤ m, this means examining O(m) threshold values and computing Ui for

each possibility.

6.4 A Sample Compression Approach

Let us now consider an alternate strategy of learning the conjunction of Rays focusing solely

on obtaining the sparsest possible solution (the one with the minimum number of features).

As before, we start by deriving a risk bound for this case and then proceed to the learning

algorithm. We derive the bound on the lines of the sample compression bound obtained for

the SCM Half-spaces in Chapter 5.

In sample compression settings for Rays, the message string still specifies the attributes

(and directions) as before. However, the thresholds are now specified by training examples.

3A ray covers an example iff it assigns -1 to that example.
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Hence, if we have |k| attributes where k is the set of thresholds, the compression set consists

of |k| training examples (one per threshold).

Now, recall the general sample compression bound of Theorem 11 (Section 3.7):

Sample Compression Theorem. For any sample compression learning algorithm with

a reconstruction function R that maps arbitrary subsets of a training set and information

messages to classifiers:

PZm {∀i ∈ I, σ ∈M(Zi) : R(R(σ,Zi)) ≤ ε(σ,Zi, |j|)} ≥ 1− δ

where

ε(σ,Zi, |j|) = 1− exp

( −1

m− |i| − |j|
[
ln

(
m

|i|
)

+ ln

(
m− |i|
|j|

)
+ ln

(
1

PM(Zi)(σ)

)
+

ln

(
1

ζ(|i|)ζ(|j|)δ
)])

(6.2)

and ζ is defined by Equation 3.11.

Now, we need to specify the distribution of messages for the conjunction of Rays. This is

the term PM(Zi)(σ) in Equation 6.2. Note that in order to specify a conjunction of Rays, the

compression set consists of one example per Ray. For each ray we have one attribute and

and a corresponding threshold value determined by the numerical value that this attribute

takes on the training example.

The learner first chooses a compression set. Then, for each example in the compression

set, the learner chooses an attribute. The determination of this attribute implicitly deter-

mines the threshold since the threshold is nothing but the attribute value for corresponding

example. Finally, the learner chooses a direction for each attribute (and hence each exam-

ple). Note that the learner does not need to select a direction if we fix it to be positive. This

reduces the running time by half and also yields a tighter bound. However, on some datasets,

the empirical results show that the choice of negative direction yields better classification

and hence the choice of the direction is crucial by the learner. Moreover, one direction might

be preferable to other in some cases.

Now, let the subset of attributes that specifies the rays in our compression set i be k.

Moreover, since there is one ray corresponding to each example in the compression set,

we have |i| = |k|. Now, we assign equal probability to each possible set |k| of attributes

(and hence thresholds) that can be selected from n attributes. Moreover, we assign equal

probability over the direction that each ray can have (+1,−1). Finally, taking into account

the ordering of the attributes that are chosen, we get the following distribution of messages:
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PM(zi)(σ) =

(
n

|k|
)−1

· 2−|k| · 1

|k|! ∀σ (6.3)

Equation 6.3 along with the Sample Compression Theorem completes the bound for the

conjunction of Rays.

6.4.1 A Greedy Learning Algorithm

Our learning algorithm for the sample compression approach to learning the conjunction (and

disjunction) of rays is an adapted version of the generic Set Covering Machine algorithm of

Chapter 4. It consists of choosing the ray i with the largest utility Ui where:

Ui = |Qi| − p|Ri| (6.4)

where Qi is the set of negative examples covered (classified as 0) by feature i, Ri is the set

of positive examples misclassified by this feature, and p is a learning parameter that gives

a penalty p for each misclassified positive example. Once the feature with the largest Ui

is found, we remove Qi and Pi from the training set S and then repeat (on the remaining

examples) until either no more negative examples are present or that a maximum number s

of features has been reached.

6.5 Results for Classification of DNA Micro-Arrays

We now test the performance of the learning algorithm for conjunction of Rays that we

designed on real-world datasets. The colon tumor data set (Alon et al., 1999) provides the

expression levels of 40 tumor and 22 normal colon tissues measured for 6500 human genes.

The ALL/AML data set (Golub et al., 1999) provides the expression levels of 7129 human

genes for 47 samples of patients with acute lymphoblastic leukemia (ALL) and 25 samples

of patients with acute myeloid leukemia (AML). The B MD and C MD data sets (Pomeroy

et al., 2002) are micro-array samples containing the expression levels of 6817 human genes.

Data set B MD contains 25 classic and 9 desmoplastic medulloblastomas whereas data set

C MD contains 39 medulloblastomas survivors and 21 treatment failures (non-survivors).

The Lung dataset consists of gene expression levels of 919 genes of 52 patients with 39

Adenocarcinoma and 13 Squamous Cell Cancer (Garber et al., 2001). This data has some
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missing values which were replaced by zeros. Finally, the BreastER dataset is the Breast

Tumor data of West et al. (2001) used with Estrogen Receptor status to label the various

samples. The data consists of expression levels of 7130 genes of 49 patients with 25 positive

Estrogen Receptor samples and 24 negative Estrogen Receptor samples.

Data Set SVM SVM+gs SVM rfe

Name #exs Errors Errors Size Errors Size

Colon 62 12 11 256 12 128

B MD 34 12 6 32 9 64

C MD 60 29 21 1024 27 7129

ALL/AML 72 18 10 64 18 256

Lung 52 8 6 64 7 32

BreastER 49 14 10 256 10 256

Table 6.1: Results of SVM on DNA Micro-array Datasets.

We have compared our learning algorithm with a linear-kernel soft-margin SVM trained

both on all the attributes (gene expressions) and on a subset of attributes chosen by the

filter method of Golub et al. (1999). The filter method of Golub et al. (1999) consists of

ranking the attributes as function of the difference between the positive-example mean and

the negative-example mean and then use only the first ` attributes. The resulting learning

algorithm, named SVM+gs in Table 6.1, is basically the one used by Furey et al. (2000)

for the same task. Guyon et al. (2002) claimed obtaining better results with the recursive

feature elimination method but, as pointed out by Ambroise and McLachlan (2002), their

work contained a methodological flaw. The details on the inherent bias in the recursive

feature elimination method can be found in Ambroise and McLachlan (2002). We use the

SVM recursive feature elimination algorithm (SVM-rfe) with this bias removed and present

these results on the above datasets as well for comparison in Table 6.1.

Each algorithm was tested with the 5-fold cross validation (CV) method. Each of the five

training sets and testing sets was the same for all algorithms. The learning parameters of all

algorithms and the gene subsets (for SVM+gs and SVM-rfe) were chosen from the training

sets only. This was done by performing a second (nested) 5-fold CV on each training set.

Please refer to Section 2.5 for more details on nested k-fold cross validation method for

empirical evaluation of the classifiers.

For the gene subset selection procedure of SVM+gs, we have considered the first ` = 2i

genes (for i = 0, 1, . . . , 12) ranked according to the criterion of Golub et al. (1999) and have
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Data Set Rays:Occam

Name #exs Errors Size Bits

Colon 62 22 2 6

B MD 34 15 1 3

C MD 60 27 2 4

ALL/AML 72 27 2 6

Lung 52 20 2 5

BreastER 49 25 3 2

Table 6.2: Results of Occam’s Razor Approach on DNA Micro-array Datasets.

Data Set Rays:SC

Name #exs Errors Size

Colon 62 16 1

B MD 34 15 1

C MD 60 29 1

ALL/AML 72 26 1

Lung 52 16 1

BreastER 49 19 1

Table 6.3: Results of Sample Compression Approach on DNA Micro-array Datasets.

chosen the i value that gave the smallest 5-fold CV error on the training set.

Table 6.2 gives the result for the Occam’s Razor approach to learning the conjunction of

Rays. The “Bits” column signifies the optimal number of bits used to encode the classifier

as discussed in Section 6.3. Table 6.3 gives the result for the Sample Compression approach.

For each algorithm, the “Errors” columns of Tables 6.1, 6.2 and 6.3 contain the 5-fold

CV error expressed as the sum of errors over the five testing sets and the “Size” columns

contain the number of attributes used by the classifier averaged over the five testing sets.

6.6 Conclusion and Outlook

The results in Tables 6.1, 6.2 and 6.3 clearly show that even though the conjunction of

Rays are better than the SVMs in terms of the size of final classifier, the SVM beats them

considerably in terms of the classification accuracy. Hence, it is clear that the Rays conjunc-

tions in their present form are not powerful enough when it comes to classifying very high
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dimensional data. Let us analyze the reasons behind such results.

Our present algorithms focus specifically on obtaining sparse solutions. The risk bound(s)

is (are) dominated by the sparsity term(s), i.e. the bounds are minimized when the learner

is able to find a classifier with a (very) small number of features. The empirical results hence

demonstrates precisely this trait. Often we are able to find just one attribute that accounts

for a large number of data points. However, focusing solely on sparsity makes the algorithm

costly in terms of its generalization performance. We have thus found empirically that sparse

solutions do not always generalize better than large-margin SVM solutions. Perhaps when

learning a sparse SCM we should also pay attention to its separating margin. That is,

among sparse solutions, we should prefer the ones for which the resulting classifier has a

large margin. We did pay attention to the margin in the Occam’s razor approach but the

risk bound depended on the margin only indirectly via a message string. In the next chapter,

we provide a risk bound that directly depends on the margin (and sparsity) of the classifier

and present a new learning algorithm that empirically performs better.



CHAPTER 7

PAC-Bayes Learning of Conjunctions of Rays

In the last chapter we presented two approaches for learning conjunctions or disjunctions of Rays

both of which achieved considerably sparse solutions, but were constrained by focusing on sparsity

alone. This chapter, hence, presents a PAC-Bayes approach for the same where the learning al-

gorithm can sacrifice some sparsity in favor of large margins so as to yield better classifiers. As

a result, we propose a feature selection algorithm with provable guarantees over the generalization

behavior of the classifier. These results appeared in part in:

M. Marchand and M. Shah. PAC-Bayes Learning of Conjunctions and Classification of Gene-

Expression Data. In Advances in Neural Information Processing Systems 17 (Proceedings of NIPS

2004), 881–888, MIT-Press, Cambridge, MA, USA, 2005.

7.1 Introduction

As described in Chapter 6, our aim is to develop an algorithm that has provably good

guarantees in presence of many irrelevant attributes. In this regard, we presented algorithms

based on obtaining a conjunction (or disjunction) of the set of simple threshold features built

on attributes that we called Rays. However, the algorithms described had limitations in the

sense that they focused solely on achieving sparse solutions. As a result, they tended to

disregard a solution that had more features but had better generalization. In this chapter,

we examine the possibility of sacrificing some sparsity in favor of a more general solution.

The generality of solutions (classifiers) have long been studied in terms of the separating

margins achieved around the decision boundaries of the classifiers, especially in the case of

the SVM, it has been shown that the optimal solution is the one that maximizes the margin

around the separating hyperplane in the feature space (see for instance (Shawe-Taylor and

Cristianini, 2004)). Hence, the most obvious approach in our case is to examine whether

we can achieve this better generality of classifiers (in terms of large margins) by sacrificing

sparsity to a certain extent, i.e. whether we can perform this non-trivial margin-sparsity

trade-off and if yes, can this approach deliver better classifiers that still utilize a reasonably

less number of features while providing a better generalization.

70
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In this regard, we try to introduce a margin around the decision boundary of each feature

(Ray in our case) and present a risk bound based on the PAC-Bayes theory that has this

ability to perform a non-trivial margin-sparsity trade-off.

This chapter is organized as follows: We propose a PAC-Bayes risk bound which is

minimized for classifiers achieving a non-trivial tradeoff between sparsity (the number of

rays used) and the magnitude of the separating margin of each ray. Based on this, we

propose a “soft greedy” learning algorithm for building small conjunctions of simple threshold

functions, called rays that we introduced in the last chapter, defined on single real-valued

attributes. Finally, we test the proposed soft greedy algorithm on DNA micro-array data

sets and analyze these results.

7.2 Definitions

The input space X consists of all n-dimensional vectors x = (x1, . . . , xn) where each real-

valued component xk ∈ [Ak, Bk] for k = 1, . . . n. Hence, Ak and Bk are, respectively, the a

priori lower and upper bounds on values for xk. That is, Ak and Bk are nothing but the

minimum and the maximum values that the attribute xk can take and that these values

(bounds) are given a priori. The output space Y is the set of classification labels that can

be assigned to any input vector x ∈ X .

We, as in the previous chapter, focus here on binary classification problems i.e. Y =

{0, 1}. Each example z = (x, y) is an input vector x with its classification label y ∈ Y . The

expected and empirical risk have the same definitions as described in Section 6.2. Also, we

stick to the same definition of the conjunction of Rays as in the last chapter, i.e. given any

input example x, the output rk
td(x) of a ray is defined as:

rk
td(x)

def
=

{
1 if (xk − t)d > 0

0 if (xk − t)d ≤ 0

where k ∈ {1, . . . , n} is the attribute index , t ∈ [Ak, Bk] is the threshold value, and d ∈
{−1, +1} is the direction (that specifies whether class 1 is on the largest or smallest values

of xk).

On the similar notes, on any input example x, the output Ck
td(x) of a conjunction of rays

is given by:

Ck
td(x)

def
=

{
1 if rj

tjdj
(x) = 1 ∀j ∈ k

0 if ∃j ∈ k : rj
tjdj

(x) = 0
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where the vector k
def
= (k1, . . . , k|k|) is the vector of attribute indices kj ∈ {1, . . . , n} such that

k1 < k2 < . . . < k|k| where |k| is the number of indices present in k, t = (tk1 , tk2 , . . . , tk|k|)

is the vector of threshold values and d = (dk1 , dk2 , . . . , dk|k|) is the vector of directions where

kj ∈ {1, . . . , n} for j ∈ {1, . . . , |k|}.
Finally, just as we noted previously, any algorithm that builds a conjunction can be

used to build a disjunction just by exchanging the role of the positive and negative labeled

examples. We describe here only the case of a conjunction. The disjunction case follows

analogically.

7.3 A PAC-Bayes Risk Bound

The PAC-Bayes approach was initiated by McAllester (1999). It aims at providing PAC

guarantees to “Bayesian” learning algorithms. We gave a brief description of the PAC-Bayes

framework in Section 3.8.

We re-state this PAC-Bayes bound over the risk of Gibbs classifier. Given an input

example x, the label GQ(x) assigned to x by the Gibbs classifier is defined by the following

process. We first choose a classifier h according to the posterior distribution Q and then use

h to assign the label h(x) to x. The risk of GQ is defined as the expected risk of classifiers

drawn according to Q:

R(GQ)
def
= Eh∼QR(h) = Eh∼QE(x,y)∼DI(f(x) 6= y)

Recall the PAC-Bayes bound of Theorem 12 (Section 3.8).

PAC-Bayes Theorem. Given any space H of classifiers. For any data-independent prior

distribution P over H and for any (possibly data-dependent) posterior distribution Q over

H, with probability at least 1− δ over the random draws of training sets S of m examples:

kl(RS(GQ)‖R(GQ)) ≤ KL(Q‖P ) + ln m+1
δ

m

where KL(Q‖P ) is the Kullback-Leibler divergence between distributions1 Q and P :

KL(Q‖P )
def
= Eh∼Q ln

Q(h)

P (h)

1Here Q(h) denotes the probability density function associated to Q, evaluated at h.
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and where kl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distributions with

probabilities of success q and p:

kl(q‖p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p

Also, as before, the bound given by the PAC-Bayes theorem for the risk of Gibbs classifiers

can be turned into a bound for the risk of Bayes classifiers. It follows that the error rate of

GQ is at least half of the error rate of Bayes classifier BQ. Hence R(BQ) ≤ 2R(GQ).

In our case, we have seen that ray conjunctions are specified in terms of a mixture of

discrete parameters k and d (the attribute vector and the direction vector respectively) and

continuous parameters t (the threshold vector). If we denote by Pk,d(t) the probability

density function associated with a prior P over the class of ray conjunctions, we consider

here priors of the form:

Pk,d(t) =
1(
n
|k|

)p(|k|) 1

2|k|
∏

j∈k

1

Bj − Aj

; ∀tj ∈ [Aj, Bj]

If K denotes the set of all 2n possible attribute index vectors and Dk denotes the set of

all 2|k| binary direction vectors d of dimension |k|, we have that:

∑

k∈K

∑

d∈Dk

∏

j∈k

∫ Bj

Aj

dtjPk,d(t) = 1

whenever
∑n

e=0 p(e) = 1.

The reasons motivating this choice for the prior are the following. The first two factors

come from the belief that the final classifier, constructed from the group of attributes specified

by k, should depend only on the number |k| of attributes in this group. If we have complete

ignorance about the number of rays the final classifier is likely to have, we should choose

p(e) = 1/(n + 1) for e ∈ {0, 1, . . . , n}. However, we should choose a p that decreases as we

increase e if we have reasons to believe that the number of rays of the final classifier will be

much smaller than n. The third factor of Pk,d(t) gives equal prior probabilities for each of

the two possible values of direction dj. Finally, for each ray, every possible threshold value t

should have the same prior probability of being chosen if we do not have any prior knowledge

that would favor some values over the others. Since each attribute value xk is constrained,

a priori, to be in [Ak, Bk], we have chosen a uniform probability density on [Ak, Bk] for each

tk such that k ∈ k. This explains the last factors of Pk,d(t).

Given a training set S, the learner will choose an attribute group k and a direction vector

d. For each attribute xk ∈ [Ak, Bk] : k ∈ k, a margin interval [ak, bk] ⊆ [Ak, Bk] will also be
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chosen by the learner. A deterministic ray-conjunction classifier is then specified by choosing

the thresholds values tk ∈ [ak, bk]. It is tempting at this point to choose tk = (ak +bk)/2 ∀k ∈
k (i.e., in the middle of each interval). However, we will see shortly that the PAC-Bayes

theorem offers a better guarantee for another type of deterministic classifier.

The Gibbs classifier is defined with a posterior distribution Q having all its weight on

the same k and d as chosen by the learner but where each tk is uniformly chosen in [ak, bk].

The KL divergence between this posterior Q and the prior P is then given by:

KL(Q‖P ) =
∏

j∈k

∫ bj

aj

dtj
bj − aj

ln

(∏
k∈k(bk − ak)

−1

Pk,d(t)

)

= ln

(
n

|k|
)

+ ln

(
1

p(|k|)
)

+ |k| ln(2) +
∑

k∈k

ln

(
Bk − Ak

bk − ak

)

Hence, we see that the KL divergence between the “continuous components” of Q and

P (given by the last term) vanishes when [ak, bk] = [Ak, Bk] ∀k ∈ k. Furthermore, the KL

divergence between the “discrete components” of Q and P is small for small values of |k|
(whenever p(|k|) is not too small). Hence, this KL divergence between our choices for Q and

P exhibits a tradeoff between margins (large values of bk − ak) and sparsity (small value of

|k|) for Gibbs classifiers . According to the PAC-Bayes theorem, the Gibbs classifier with the

smallest guarantee of risk R(GQ) should minimize a non trivial combination of KL(Q‖P )

(margins-sparsity tradeoff) and empirical risk RS(GQ).

Since the posterior Q is identified by an attribute group vector k, a direction vector d,

and intervals [ak, bk] ∀k ∈ k, we will refer to the Gibbs classifier GQ by Gkd
ab where a and b

are the vectors formed by the unions of aks and bks respectively. We can obtain a closed-form

expression for RS(Gkd
ab) by first considering the risk R(x,y)(G

kd
ab) on a single example (x, y)

since RS(Gkd
ab) = E(x,y)∼SR(x,y)(G

kd
ab). From our definition for Q, we find that:

R(x,y)(G
kd
ab) = (1− 2y)

[∏

k∈k

σdk
ak,bk

(xk)− y

]
(7.1)

where we have used the following piece-wise linear functions:

σ+
a,b(x)

def
=





0 if x < a
x−a
b−a

if a ≤ x ≤ b

1 if b < x

; σ−a,b(x)
def
=





1 if x < a
b−x
b−a

if a ≤ x ≤ b

0 if b < x

(7.2)

Hence we notice that R(x,1)(G
kd
ab) = 1 (and R(x,0)(G

kd
ab) = 0) whenever there exist k ∈

k : σdk
ak,bk

(xk) = 0. This occurs iff there exists a ray which outputs 0 on x. We can
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also verify that the expression for R(x,y)(C
k
td) is identical to the expression for R(x,y)(G

kd
ab)

except that the piece-wise linear functions σdk
ak,bk

(xk) are replaced by the indicator functions

I((xk − tk)dk > 0).

The PAC-Bayes theorem provides a risk bound for the Gibbs classifier Gkd
ab. Since the

Bayes classifier Bkd
ab just performs a majority vote under the same posterior distribution as

the one used by Gkd
ab, we have that Bkd

ab (x) = 1 iff the probability that Gkd
ab classifies x as

positive exceeds 1/2. Hence, it follows that:

Bkd
ab (x) =

{
1 if

∏
k∈k σdk

ak,bk
(xk) > 1/2

0 if
∏

k∈k σdk
ak,bk

(xk) ≤ 1/2
(7.3)

Note that Bkd
ab has an hyperbolic decision surface. Consequently, Bkd

ab is not representable

as a conjunction of rays. There is, however, no computational difficulty at obtaining the

output of Bkd
ab (x) for any x ∈ X .

From the relation between Bkd
ab and Gkd

ab, it also follows that R(x,y)(B
kd
ab ) ≤ 2R(x,y)(G

kd
ab)

for any (x, y). Consequently, R(Bkd
ab ) ≤ 2R(Gkd

ab). Hence, we have our main theorem:

Theorem 16. Given all our previous definitions, for any δ ∈ (0, 1], and for any p satisfying∑n
e=0 p(e) = 1, we have:

PrS∼Dm

(
∀k,d, a,b : R(Gkd

ab) ≤ sup

{
ε : kl(RS(Gkd

ab)‖ε) ≤ 1

m

[
ln

(
n

|k|
)

+

+ |k| ln(2) + ln

(
1

p(|k|)
)

+
∑

k∈k

ln

(
Bk − Ak

bk − ak

)
+ ln

m + 1

δ

]})
≥ 1− δ

Furthermore: R(Bkd
ab ) ≤ 2R(Gkd

ab) ∀k,d, a,b.

7.4 A Soft Greedy Learning Algorithm

Theorem 16 suggests that the learner should try to find the Bayes classifier Bkd
ab that uses a

small number of attributes (i.e., a small |k|), each with a large separating margin (bk − ak),

while keeping the empirical Gibbs risk RS(Gkd
ab) at a low value. To achieve this goal, we have

adapted the greedy algorithm for the set covering machine (SCM) proposed by Marchand

and Shawe-Taylor (2002) and described briefly in chapter 4. It consists of choosing the

feature (here a ray) i with the largest utility Ui where:

Ui = |Qi| − p|Ri| (7.4)
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where Qi is the set of negative examples covered (classified as 0) by feature i, Ri is the set

of positive examples misclassified by this feature, and p is a learning parameter that gives

a penalty p for each misclassified positive example. Once the feature with the largest Ui

is found, we remove Qi and Pi from the training set S and then repeat (on the remaining

examples) until either no more negative examples are present or that a maximum number s

of features has been reached.

In our case, however, we need to keep the Gibbs risk on S low instead of the risk of a

deterministic classifier. Since the Gibbs risk is a “soft measure” that uses the piece-wise

linear functions σd
a,b instead of the “hard” indicator functions, we cannot make use of the

hard utility function of Equation 7.4. Instead, we need a “softer” version of this utility

function Ui. Indeed, a negative example that falls in the linear region of a σd
a,b is in fact

partly covered and vice versa for the positive example.

Following this observation, let k′ be the vector of indices of the attributes that we have

used so far for the construction of the classifier. Let us first define the covering value C(Gk′d
ab )

of Gk′d
ab by the “amount” of negative examples assigned to class 0 by Gk′d

ab :

C(Gk′d
ab )

def
=

∑

(x,y)∈S

(1− y)

[
1−

∏

j∈k′
σ

dj

aj ,bj
(xj)

]

We also define the positive-side error E(Gk′d
ab ) of Gk′d

ab as the “amount” of positive examples

assigned to class 0 :

E(Gk′d
ab )

def
=

∑

(x,y)∈S

y

[
1−

∏

j∈k′
σ

dj

aj ,bj
(xj)

]

We now want to add another ray on another attribute, call it i, to obtain a new vector k′′

containing this new attribute in addition to those present in k′. Hence, we now introduce

the covering contribution of ray i as:

Ck′d
ab (i)

def
= C(Gk′′d′

a′b′ )− C(Gk′d
ab ) =

∑

(x,y)∈S

(1− y)
[
1− σdi

ai,bi
(xi)

] ∏

j∈k′
σ

dj

aj ,bj
(xj)

and the positive-side error contribution of ray i as:

Ek′d
ab (i)

def
= E(Gk′′d′

a′b′ )− E(Gk′d
ab ) =

∑

(x,y)∈S

y
[
1− σdi

ai,bi
(xi)

] ∏

j∈k′
σ

dj

aj ,bj
(xj)

Typically, the covering contribution of ray i should increase its “utility” and its positive-

side error should decrease it. Moreover, we want to decrease the “utility” of ray i by an
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amount which would become large whenever it has a small separating margin. Our expression

for KL(Q‖P ) suggests that this amount should be proportional to ln((Bi − Ai)/(bi − ai)).

We define the utility Uk′d
ab (i) of adding ray i to Gk′d

ab as:2

Uk′d
ab (i)

def
= Ck′d

ab (i)− pEk′d
ab (i)− η ln

Bi − Ai

bi − ai

where parameter p represents the penalty of misclassifying a positive example and η is another

parameter that controls the importance of having a large margin. These learning parameters

can be chosen by cross-validation. For fixed values of these parameters, the “soft greedy”

algorithm simply consists of adding, to the current Gibbs classifier, a ray with maximum

added utility until either the maximum number s of rays has been reached or that all the

negative examples have been (totally) covered. It is understood that, during this soft greedy

algorithm, we can remove an example (x, y) from S whenever it is totally covered. This

occurs whenever
∏

j∈k′ σ
dj

aj ,bj
(xj) = 0.

7.4.1 Time Complexity Analysis

We analyze the time complexity of this algorithm now for fixed p and η. For each potential

ray (and hence for each attribute effectively), we first sort the m examples with respect to

their values for the attribute under consideration. This takes O(m log m) time. Then, we

examine each potential ai value. Corresponding to each ai, we examine all the potential bi

values (all the values greater than ai). This gives us a time complexity of O(m2). Now if k

is the largest number of examples falling into the margin, calculating the covering and error

contributions and then finding the best ray over an attribute takes O(km2) time. Moreover,

we allow k ∈ O(m) giving us a time complexity of O(m3). Finally, we do this over all the

attributes. Hence, the overall time complexity of the algorithm is O(nm3). However, note

that generally n >> m, and hence dominates the complexity factor. More so, since once

the best ray is found, we remove the examples covered by this ray from the training set and

repeat the algorithm. Now, we know that greedy algorithms of this kind have the following

guarantee: if there exist r rays that covers all the m examples, the greedy algorithm will

find at most r ln(m) rays. Since we almost always have r ∈ O(1), the running time of the

whole algorithm will almost always be ∈ O(nm3 log(m)). The good news is that n >> m

and our bound is roughly linear in terms of n.

2Note that this utility function is different and more stable than the one reported in (Marchand and

Shah, 2005)
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7.4.2 Fixed-Margin Heuristic

In order to show why we prefer a uniformly distributed threshold as opposed to the one

fixed at the middle of the interval [ai, bi] for each feature i, we use an alternate algorithm

with, what we call the fixed margin heuristic. The algorithm is similar to the one described

above but with an additional parameter γ. The parameter decides a fixed margin boundary

around the threshold, i.e. γ decides the length of the interval [ai, bi]. The algorithm still

chooses the attribute vector k, the direction vector d and the vectors a and b. However,

the ai’s and bi’s for each feature i are chosen such that, |bi − ai| = 2γ. The threshold ti is

then fixed in the middle of this interval, that is ti = (ai+bi)
2

. Hence, for each feature i, the

interval [ai, bi] = [ti − γ, ti + γ] when di = −1 and [ai, bi] = [ti + γ, ti − γ] when di = +1.

This algorithm, as can obviously be seen, takes less time than the original one. The time

complexity of this algorithm is roughly O(nm2 log(m)) for fixed p and γ.

7.5 Results for Classification of DNA Micro-Arrays

Let us now test the performance of this new soft greedy learning algorithm on real-world

datasets. We have tested the soft greedy learning algorithm on the same DNA micro-array

data sets as described in Section 6.5.

Also, we compare our soft greedy learning algorithm with a linear-kernel soft-margin

SVM trained both on all the attributes (gene expressions) and on a subset of attributes

chosen by the filter method of Golub et al. (1999) as well as the recursive feature elimination

algorithm. See Section 6.5 for details.

Again, each algorithm was tested with the 5-fold cross validation (CV) method. Each

of the five training sets and testing sets was the same for all algorithms. The learning

parameters of all algorithms and the gene subsets (for SVM+gs and SVM-rfe) were chosen

from the training sets only. This was done by performing a second (nested) 5-fold CV on

each training set.

Tables 7.2 and 7.3 give the results of the PAC-Bayes approach to learning the conjunction

of Rays discussed in Section 7.3. The results in Table 7.2 are for the PAC-Bayes learning

algorithm with the fixed margin heuristic. We discussed this in Section 7.4.2.

For each algorithm, the “Errors” columns of Tables 7.1, 7.2 and 7.3 contain the 5-fold

CV error expressed as the sum of errors over the five testing sets and the “Size” columns

contain the number of attributes used by the classifier averaged over the five testing sets.

The “G-err” and “B-err” columns of Table 7.3 refer to the error rates of Gibbs and Bayes
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Data Set SVM SVM+gs SVM rfe

Name #exs Errors Errors Size Errors Size

Colon 62 12 11 256 12 128

B MD 34 12 6 32 9 64

C MD 60 29 21 1024 27 7129

ALL/AML 72 18 10 64 18 256

Lung 52 8 6 64 7 32

BreastER 49 14 10 256 10 256

Table 7.1: Results of SVM on DNA Micro-array Datasets.

Data Set Soft Greedy(fixed margin)

Name #exs size Errors Bound

Colon 62 1 14 34

B MD 34 1 7 20

C MD 60 3 28 48

ALL/AML 72 2 21 46

Lung 52 2 9 29

BreastER 49 3 11 31

Table 7.2: Results of the PAC-Bayes Approach (with Fixed-Margin Heuristic) on DNA

Micro-array Datasets.

Classifiers respectively. The “Ratio” column of Table 7.3 refers to the average value of

(bk − ak)/(Bk − Ak) obtained for the rays used by classifiers and the “bound” columns of

Tables 7.2 and 7.3 refer to the average risk bound of Theorem 16 multiplied by the total

number of examples.

7.6 Conclusion and Outlook

We analyze the results on some important grounds. As we mentioned in the last chapter,

the feature selection method generally produce good empirical results with algorithms such

as the support vector machine that are not specifically designed to perform well in presence

of a high number of irrelevant attributes. This can be seen in the results of the SVM+gs in

Table 7.1. The gene selection filter indeed improves the result of SVM on the DNA micro

array datasets. So is the case for the Recursive Feature Elimination algorithm in conjunction
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Data Set Soft Greedy

Name #exs ratio size G-errs B-errs Bound

Colon 62 0.42 1 12 11 34

B MD 34 0.10 1 6 6 20

C MD 60 0.077 3 26 22 45

ALL/AML 72 0.002 2 19 18 44

Lung 52 0.12 2 8 7 27

BreastER 49 0.09 3 10 9 29

Table 7.3: Results of the PAC-Bayes Approach on DNA micro-array Datasets.

with SVM (SVM-rfe) in Table 7.1.

In each of the proposed algorithms for learning the Rays’ conjunction so far, the number

of genes selected are significantly better than SVM. However, the two “purist” approaches do

not give as good results as the PAC-Bayes approach. Reasons for such performance can be

seen in terms of the quantities that these two approaches optimize: The Sample compression

approach tries to minimize the number of genes used but does not take into account the

separating margin and hence compromises accuracy. On the other hand, the Occam’s Razor

approach tries to find a classifier that depends on margin only indirectly.

The PAC-Bayes approach can perform significant margin-sparsity tradeoff by focusing

explicitly on both margin and sparsity and gives better results. This approach hence finds

a balance between these two quantities and thus outputs a very good accuracy. Moreover,

fixing the threshold in the middle of the interval [ai, bi] for each Ray i generally limits the

choice of the classifiers. Hence, the approach with the threshold uniformly distributed in the

margin interval is preferred.

In the context of the PAC-Bayes approach note that the Bayes classifier no longer has a

piecewise linear decision surface. For the PAC-Bayes approach, we expect the Bayes classifier

to generally perform better than the Gibbs classifier. This is aptly reflected in the empirical

results as well. However, there is no means to prove that this will always be the case. The

Bayes error rate is slightly better than the Gibbs error rate. Finally, the error rates of Bayes,

SVM-rfe and SVM+gs are competitive but the number of genes selected by the soft greedy

algorithm is always much smaller.

It should be noted that there are other possible utility functions possible as well for

various learning approaches. We have tried some of these and the reported results are for

the ones that were found best (and discussed in the description of the corresponding learning
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algorithms).

Finally, as opposed to the SVM+gs and SVM-rfe methods, we have a theoretical expla-

nation of the performance of the soft greedy algorithm and its future generalization on the

data. Note that the PAC-Bayes bound that we proposed in this chapter holds for all a priori

minimum and maximum attribute values Ai and Bi but not uniformly for all Ai and Bi.

This is a problem worth investigating further in the future.



CHAPTER 8

Margin-Sparsity Tradeoff and Data-Compression

In this chapter we propose a new algorithm for SCM with data-dependent balls that utilizes two

complementary sources of information to represent the hypothesis: the compression set, and the

message strings. We propose a new representation for the balls’ radii in terms of a code that is

small when large margins around the decision boundary can be achieved. Hence, the algorithm can

trade-off sparsity in favor of a smaller code. We also present a risk bound that allows the algorithm

to perform this trade-off explicitly. These results appeared in part in:

F. Laviolette, M. Marchand and M. Shah. Margin-Sparsity Trade-off for the Set Covering Machine.

In Proceedings of the 16th European Conference on Machine Learning (ECML ’05), Springer LNAI

vol. 3720, 206–217, 2005.

8.1 Introduction

In quest of obtaining better classifiers by performing a non-trivial margin-sparsity trade-

off, we now propose an alternative algorithm for set covering machine that utilizes two

complementary sources of information viz. the compression set and the message string. This

approach is close to the Occam Razor approach that we applied for learning conjunction

of Rays but provide a tighter bound in this case and moreover this bound can also be

effectively utilized for model selection. Our work is inspired by the PAC-MDL approach

proposed by Blum and Langford (2003).

Blum and Langford (2003) have derived a PAC-MDL risk bound for classifiers that unifies

most of the standard risk bounds in one common framework. This PAC-MDL bound is stated

in a non-standard “transductive” setting where, given a training set of m labeled examples,

the goal of the learner is to construct a small message string that can be used by a receiver

to predict the labels of an unlabelled set of m + n examples that contains the m training

examples (without their labels). Consequently, one important drawback of the PAC-MDL

bound is that it does not capture the sample-compression bound (Littlestone and Warmuth,

1986) very well. Indeed, in the PAC-MDL transductive setting, the learner has to build a

message string that specifies a compression subset among m + n examples whereas, in the

82
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usual “inductive” setting,1 the learner just needs to specify the compression subset among

m training examples. Because of this, the PAC-MDL bound is usually substantially larger

than the sample-compression bound.

In this chapter, we propose a tight data-compression risk bound that, although less

universal than the PAC-MDL bound, unifies the Occam’s razor bound (Blumer et. al.,

1987) and the sample-compression bound in the usual inductive setting. This bound, which

is a tighter version of the sample-compression bound of Littlestone and Warmuth (1986), is

expressed in terms of a small subset of the training set (the compression set) and a message

string of additional information needed to identify a classifier. The bound reduces to the

tightest version of the Occam’s razor bound (Langford, 2005) when no compression set is

used and also reduces to the tightest version of the sample-compression bound (Langford,

2005) when no message string of additional information is used. We illustrate, on the set

covering machine (SCM) (Marchand and Shawe-Taylor, 2002), how the learner can tradeoff

these two complementary sources of information (the compression set and the message string)

to obtain classifiers having a smaller risk.

In particular, we present a new algorithm for the SCM where the learner uses a code for

distances that becomes small when there exists large margins of “equally good” positions for

the decision surface of a classifier. Hence, with this new algorithm, the learner can tradeoff

sparsity with the margin. The sparsity is nothing but the inverse of the compression set size

while margin denotes the inverse of the message length. We show, on natural data sets, that

this new SCM algorithm compares favorably to the previous SCM algorithm of Marchand and

Shawe-Taylor (2002) and we also show that the data-compression risk bound is an effective

guide for choosing the proper margin-sparsity tradeoff of a classifier. In this chapter, we

make use of the SCM with data-dependent balls as described in Chapter 4.

8.2 A Data-Compression Risk Bound

We derive the data-compression risk bound using the sample compression framework. How-

ever, we follow the Binomial tail inversion version of the bounds (Langford, 2005, Blum and

Langford, 2003) somewhat similar to what we did in Chapter 6.

In addition to the notation used so far, we will use i to denote the set of indices not

present in i. Hence, we have S = zi ∪ zi for any vector i ∈ I where I denotes the set of the

2m possible realizations of i.

1In this setting, the task of the learner is to find a classifier with the smallest true risk.
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In contrast to the perceptron learning rule and the SVM where the final classifier can

be reconstructed solely from a compression set (Graepel, Herbrich and Shawe-Taylor, 2000,

Graepel, Herbrich, and Williamson, 2001), the reconstruction function for SCMs needs both

a compression set and a message string. Later, we will see how the learner can tradeoff the

compression set size with the length of the message string to obtain a classifier with a smaller

risk bound and, hopefully, a smaller true risk.

We seek a tight risk bound for arbitrary reconstruction functions that holds uniformly

for all compression sets and message strings. For this, we adopt the PAC setting where each

example z is drawn according to a fixed, but unknown, probability distribution D on X ×Y .

The notations for the true and the empirical risks remain the same.

Recall from Chapter 6 that Bin (RS(f), δ) is the smallest upper bound, which holds with

probability at least 1− δ, on the true risk of any classifier f with an observed empirical risk

RS(f) on a test set of m examples:

PZm

{
R(f) ≤ Bin

(
RZm(f), δ

)}
≥ 1− δ ∀f (8.1)

Note that the quantifier ∀f appears outside the probability PZm{·} because the bound

Bin (RS(f), δ) does not hold simultaneously (and uniformly) for all classifiers f member of

some predefined class F . In contrast, the proposed risk bound of Theorem 17 holds uniformly

for all compression sets and message strings.

The proposed risk bound is a generalization of the sample-compression risk bound of Lang-

ford (2005) to the case where part of the data-compression information is given by a message

string. It also has the property to reduce to the Occam’s razor bound when the sample

compression set vanishes. The idea of using a message string as an additional source of

information was also used by Littlestone and Warmuth (1986) and Ben-David and Litman

(1998) to obtain a sample-compression bound looser than the bound presented here. More-

over, the proposed bound applies to any compression set-dependent distribution of messages

PM(zi) satisfying: ∑

σ∈M(zi)

PM(zi)(σ) ≤ 1 ∀zi (8.2)

and any prior distribution PI of vectors of indices satisfying:
∑

i∈I
PI(i) ≤ 1 (8.3)

Theorem 17. 2 For any reconstruction function R that maps arbitrary subsets of a training

set and message strings to classifiers, for any prior distribution PI of vectors of indices, for

2Note that a specialized version of this result appear in Theorem 15
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any compression set-dependent distribution of messages PM(zi), and for any δ ∈ (0, 1[, we

have:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤ Bin

(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≥ 1−δ

where, for any training set zm, Rzi
(f) denotes the empirical risk of classifier f on the ex-

amples of zm that do not belong to the compression set zi.

Proof. Consider:

P ′ def
= PZm

{
∃i ∈ I : ∃σ ∈M(Zi) : R(R(σ,Zi)) > Bin

(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

To prove the theorem, we show that P ′ ≤ δ. Since PZm(·) = EZi
PZi|Zi

(·), the union bound

and Equations 8.1, 8.2, and 8.3 imply that we have:

P ′ ≤
∑

i∈I
EZi

∑

σ∈M(Zi)

PZi|Zi

{
R(R(σ,Zi)) > Bin

(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≤
∑

i∈I
EZi

∑

σ∈M(Zi)

PI(i)PM(zi)(σ)δ

≤ δ

The risk bound of Theorem 17 appears to be as tight as it possibly can. Indeed, the

proof of Theorem 17 contains three inequalities. The last two inequalities come from Equa-

tions 8.1, 8.2, and 8.3 and cannot be improved. The first inequality comes from the applica-

tion of the union bound for all the possible choices of a compression subset of the training

set and is unavoidable for statistically independent training examples.

It is important to note that, once PI and PM(zi) are specified, the risk bound of Theo-

rem 17 for classifierR(zi, σ) depends on its empirical risk and on the product PI(i)PM(zi)(σ).

However, ln
(

1
PI(i)PM(zi)

(σ)

)
is just the amount of information needed to specify a classifier

R(zi, σ) once we are given a training set and the priors PI and PM(zi). The ln(1/PI(i)) term

is the information content of the vector of indices i that specifies the compression set and the

ln(1/PM(zi)(σ)) term is the information content of the message string σ. Consequently the

bound of Theorem 17 specifies quantitatively how much training error learning algorithms

should trade-off with the amount of information needed to specify a classifier by i and σ.

Any bound expressed in terms of the binomial tail inversion can be turned into a more

conventional and looser bound by inverting a standard approximation of the binomial tail
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such as those obtained from the inequalities of Chernoff and Hoeffding. Here, we make use of

the following approximations (provided here without proof) for the binomial tail inversion:3

Lemma 18. For any integer m ≥ 1 and k ∈ {0, . . . , m}, we have:

Bin

(
k

m
, δ

)
≤ 1− exp

(
−1

m− k

[
ln

(
m

k

)
+ ln

(
1

δ

)])
(8.4)

≤ 1

m− k

[
ln

(
m

k

)
+ ln

(
1

δ

)]
(8.5)

Therefore, these approximations enable us to rewrite the bound of Theorem 17 into the

following looser (but somewhat clearer and more conventional) form:

Corollary 19. For any reconstruction function R that maps arbitrary subsets of a training

set and message strings to classifiers, for any prior distribution PI of vectors of indices, for

any compression set-dependent distribution of messages PM(zi), and for any δ ∈ (0, 1], we

have:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤

1− exp

(
−1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)])}
≥ 1− δ (8.6)

and, consequently:

PZm

{
∀i ∈ I, ∀σ ∈M(Zi) : R(R(σ,Zi)) ≤

1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)]}
≥ 1− δ (8.7)

where d
def
= |i| is the sample compression set size of classifierR(σ,Zi) and k

def
= |i|Rzi

(R(σ,Zi))

is the number of training errors that this classifier makes on the examples that are not in the

compression set.

It is now quite clear from Corollary 19 that the risk bound of classifier R(σ,Zi) is small

when its compression set size d and its number k of training errors are both much smaller than

the number m of training examples. These are uniform bounds over a set of data-dependent

classifiers defined by the reconstruction function R. In contrast, VC bounds (Vapnik, 1998)

and Rademacher bounds (Mendelson, 2002)) are uniform bounds over a set of functions

3The proof for Lemma 18 can easily be obtained along the lines of Langford (2005).
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defined without reference to the training data. Hence, these latter bounds do not apply

naturally to our case.

The bound of Equation 8.6 is very similar to (and slightly tighter than) the recent bound

of Marchand and Sokolova (2005). Moreover, it is also a direct improvement on the bound

of Theorem 11 because of the more efficient treatment of training errors.

The looser bound of Equation 8.7 is similar to the bounds of Littlestone and Warmuth

(1986) and Floyd and Warmuth (1995) when the set M of all possible messages is indepen-

dent of the compression set zi and when we choose:

PM(zi)(σ) = 1/|M| ∀σ ∈M (8.8)

PI(i) =

(
m

|i|
)−1

(m + 1)−1 ∀i ∈ I (8.9)

But other choices that give better bounds are clearly possible. For example, in the following

sections we will use:

PI(i) =

(
m

|i|
)−1

ζ(|i|) with ζ(a)
def
=

6

π2
(a + 1)−2 ∀a ∈ N (8.10)

which satisfies the constraint of Equation 8.3 since
∑∞

i=1 i−2 = π2/6. This choice for PI has

the advantage that the risk bounds do not deteriorate too rapidly when |i| increases.

In the next section, we show how we can apply the risk bounds of Theorem 17 and

Corollary 19 to the SCM. For this task, we will provide choices for the distribution of messages

PM(zi) which are more appropriate than the simplest choice given by Equation 8.8. Indeed,

we feel that it is important to allow the set of messages to depend on the sample compression

zi since it is conceivable that for some zi, very little extra information may be needed to

identify the classifier whereas for some other zi, more information may be needed. Without

such a dependency on zi, the set of possible messages M would be unnecessarily large and

would loosen the risk bound. But, more importantly, the risk bound would not depend on

the particular message σ used. However, we feel that it is important for learning algorithms

to be able to trade-off the complexity (or information content) of i with the complexity of

σ. Hence, a good risk bound should somehow indicate what the proper trade-off should be.

8.3 Application to the Set Covering Machine

Recall that the task of the SCM is to construct the smallest possible conjunction of (Boolean-

valued) features. We discuss here only the conjunction case. The disjunction case is treated

similarly just by exchanging the role of the positive with the negative examples.
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For the case of data-dependent balls , each feature is identified by a training example,

called a center (xc, yc), and a radius ρ. Given any metric d, the output h(x) on any input

example x of such a feature is given by:

h(x) =

{
yc if d(x,xc) ≤ ρ

−yc otherwise

8.3.1 Coding Each Radius with a Training Example

The original formulation of the SCM uses another training example xb, called a border point,

to code for the radius so that ρ = d(xc,xb). In this case, recall that:

PM(Zi)(σ) = ζ(b(σ)) ·
(

p(zi)

b(σ)

)−1

(8.11)

since, in that case, we have for any compression set zi:

∑

σ∈M(zi)

PM(zi)(σ) =

p(zi)∑

b=0

ζ(b)
∑

σ:b(σ)=b

(
p(zi)

b(σ)

)−1

≤ 1

With this distribution PM(zi), the risk bound of Theorem 17 is tighter than the Sample

compression Bound of Chapter 4. This is because of the more efficient treatment of the

training errors made by using the binomial tail inversion.

8.3.2 Coding Each Radius with a Small Message String

Another alternative is to code each radius value by a message string having the fewest number

of bits. In this case, no border points are used and the compression set only consists of ball

centers. Consequently, the risk bounds of Theorem 17 and Corollary 19 will be smaller for

classifiers described by this method provided that we do not use too many bits to code each

radius. We expect that this will be the case whenever there exists a large interval [r1, r2]

(i.e., a margin) of radius values such that no training examples are present between the two

concentric spheres, centered on xc, with radius r1 and r2. The best radius value in that

case will be the one that has the shortest code. A similar idea was applied by von Luxburg,

Bousquet, and Schölkopf (2004) for coding the maximum-margin hyperplane solution for

support vector machines.

Hence, consider the problem of coding a radius value r ∈ [r1, r2] ⊂ [0, R] where R is some

predefined value that cannot be exceeded and where [r1, r2] is an interval of “equally good”
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radius values4. We propose the following diadic coding scheme for the identification of a

radius value that belongs to that interval. Let l be the number of bits that we use for the

code. We adopt the convention that a code of l = 0 bits specifies the radius value R/2. A

code of l = 1 bit either specifies the value R/4 (when the bit is 0) or the value 3R/4 (when

the bit is 1). A code of l = 2 specifies one of the following values: R/8, 3R/8, 5R/8, 7R/8.

Hence, a code of l bits specifies one value among the set Λl of radius values:

Λl
def
=

{
2j − 1

2l+1
R

}2l

j=1

Given an interval [r1, r2] ⊂ [0, R] of radius values, we take the smallest number l of bits such

that there exists a radius value in Λl that falls in the interval [r1, r2]. In this way, we will

need at most blog2(R/(r2 − r1))c bits to obtain a radius value that falls in [r1, r2].

Hence, to specify the radius for each center of a compression set, we need to specify the

number l of bits and a l-bit string s that identifies one of the radius values in Λl. Therefore,

the message string σ sent to the reconstruction function R, for a compression set zi, consists

of the set of pairs (li, si) of numbers needed to identify the radius of each center i ∈ i.

The risk bound does not depend on how we actually code σ (for some receiver). It only

depends on the a priori probabilities assigned to each possible realization of σ. We choose

the following distribution:

PM(Zi)(σ)
def
= PM(Zi)(l1, s1, . . . , l|i|, s|i|)

=
∏

i∈i

ζ(li) · 2−li (8.12)

where ζ(li) is given by Equation 8.10.

Note that by giving equal a priori probability to each of the 2li strings si of length li,

we give no preference to any radius value in Λli once we have chosen a scale R that we

believe is appropriate. The distribution ζ that we have chosen for each string length li has

the advantage of decreasing slowly so that the risk bound does not deteriorate to rapidly as

li increases. Other choices are clearly possible.

By comparing the risk bounds of Corollary 19 for the two possible choices we have for

coding each radius (either with an example or with a message string), we notice that it should

be preferable to code explicitly a radius value with a string whenever we use a number l of

bits less than log2 m (roughly). Hence, this will be the case whenever there exists an interval

[r1, r2] of “good” radius values such that (r2 − r1)/R ' 1/m.

4By a “good” radius value, we mean a radius value for a ball that would cover many negative examples

and very few positive examples (see the learning algorithm).
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Finally, we emphasize that the risk bounds of Theorem 17 and Corollary 19, used in

conjunction with the distribution of messages given by Equation 8.12, provides a guide for

choosing the appropriate tradeoff between sparsity (the inverse of the size of the compression

set) and margin (the inverse of the expected length of the message string). Indeed, the risk

bound for an SCM with a decision surface having a large margin of separation (small lis)

may be smaller than the risk bound of a sparser SCM having a smaller margin (large lis).

The Learning Algorithm

Ideally, we would like to find a conjunction of balls that minimizes the risk bound of The-

orem 17 with the distribution given by Equation 8.12. Unfortunately, this cannot be done

efficiently in all cases since this problem is at least as hard as the (NP-complete) minimum

set cover problem (Marchand and Shawe-Taylor, 2002) as discussed before. However, we can

make use of the set covering greedy heuristic.

We say that a ball covers an example iff it assigns -1 to that example. The set covering

greedy heuristic simply consists of using a ball that covers the largest number of negative

examples (without making any errors on the positives), remove these negative covered ex-

amples and repeat until all the negative examples are covered. Marchand and Shawe-Taylor

(2002) have modified this heuristic by incorporating the possibility of making training errors

if the final classifier is much smaller as we showed in Chapter 4. Recall that it works as

follows. Let N be the set of negative examples and P be the set of positive examples. We

start with N ′ = N and P ′ = P . Let Qi be the subset of N ′ covered by ball i and let Ri be

the subset of P ′ covered by ball i. We choose the ball i that maximizes the utility Ui defined

as:

Ui
def
= |Qi| − p · |Ri| (8.13)

where p is the penalty suffered by covering (and hence, misclassifying) a positive example.

Once we have found a ball maximizing Ui, we update N ′ = N ′ − Qi and P ′ = P ′ − Ri and

repeat to find the next ball until either N ′ = ∅ or the maximum number v of balls has been

reached (early stopping the greedy).

Here we first modify this heuristic by allowing a maximum number of bits l∗ that can

be used for coding the radius of each ball. Classifiers obtained with a small value of l∗

will, on average, have a large separating margin. Moreover, for this new learning algorithm,

the distribution of messages given by Equation 8.12 is defined for a fixed value of R (the

“predefined radius value that cannot be exceeded”). Hence, in this case, R should be chosen
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from the definition of each input attribute without observing the data. Consequently, this

will generally force each ball of the classifier to use a large number of bits for its radius value;

otherwise the final classifier is likely to make numerous training errors. We have therefore

used the following scheme to choose R from the training data. We first choose a value R∗ from

the definition of each input attribute (without observing the data). This could be R∗ =
√

n

for the case of n {0, 1}-valued attributes. Then, we consider t equally-spaced values for R

in the interval ]0, R∗]. The message string σ described in Section 8.3.2 is then just preceded

by the index to one of these t possible values. The value of R referred to by this index will

then be used for every ball of the classifier. For this extra part of the message, we have

assigned equal probability to each of the t possible values for R. With this scheme, we only

need to multiply PM(Zi)(σ) of Equation 8.12 by 1/t. Nevertheless, this introduces one more

adjustable parameter in the learning algorithm: the value of R.5 Therefore, p, v, l∗, and R

are the “learning parameters” that our heuristic uses to generate a set of classifiers. At the

end, we can use the bound of Theorem 17 to select the best classifier. Another alternative

is to determine the best parameter values by cross-validation.

8.4 Empirical Results on Natural Data

We have compared the new learning algorithm (called here SCM2), that codes each ball

radius with a message string, with the old algorithm (called here SCM1), that codes each

radius with a training example. Both of these algorithms were also compared with the

support vector machine (SVM) equipped with a RBF kernel of variance 1/γ and a soft

margin parameter C. Each SCM algorithm used the L2 metric since this is the metric

present in the argument of the RBF kernel.

Each algorithm was tested on the UCI data sets of Tables 8.1, 8.2 and 8.3. Each data set

was randomly split in two parts. About half of the examples were used for training and the

remaining examples were used for testing. The corresponding values for these numbers of

examples are given in the “train” and “test” columns of Tables 8.1, 8.2 and 8.3. The learning

parameters of all algorithms were determined from the training set only. The parameters C

and γ for the SVM were determined by the 5-fold cross validation (CV) method performed

on the training set. The parameters that gave the smallest 5-fold CV error were then used

to train the SVM on the whole training set and the resulting classifier was then run on the

testing set. Exactly the same method (with the same 5-fold split) was used to determine the

5We have used t u 30 different values of R in our experiments.
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learning parameters of both SCM1 and SCM2. These results are referred to (in Tables 8.2

and 8.3) as SCM1-cv and SCM2-cv. In addition to this, we have compared this 5-fold

CV model selection method with a model selection method that uses the risk bound 8.6 of

Corollary 19 to select the best SCM classifier obtained from the same possible choices of the

learning parameters that we have used for the 5-fold CV method6. The SCM that minimizes

the risk bound (computed from the training set) was then run on the testing set. These

results are referred to (in Tables 8.2 and 8.3) as SCM1-b and SCM2-b. For SCM1, the risk

bound was used in conjunction with the distribution of messages given by Equation 8.11.

For SCM2, the risk bound was used in conjunction with the distribution of messages given

by Equation 8.12.

Table 8.1: SVM Results on UCI Datasets.

Data Set SVM results

Name train test C γ SVs errs

breastw 343 340 1 0.1 38 15

bupa 170 175 2 3.0 169 66

credit 353 300 100 0.25 282 51

Glass 107 107 10 3.0 51 29

haberman 144 150 2 0.5 81 39

Heart 150 147 1 3.0 64 26

pima 400 368 0.5 0.02 241 96

USvotes 235 200 1 0.02 53 13

The “SVs” column of the SVM results refers to the number of support vectors present

in the final classifier. The “errs” column, for all learning algorithms, refers to the number

of classification errors obtained on the testing set. Finally, the “b” and “l∗” columns of the

SCM results refer, respectively, to the number of balls and the maximum number of bits

used by the final classifier.

8.5 Conclusion and Outlook

In this Chapter, we have proposed a new representation for the SCM that uses two distinct

sources of information to represent a conjunction of data-dependent balls: a compression

set to specify the center of each ball and a message string to encode the radius value of

6It consists of an exhaustive list of possible values for (p, l∗, v).
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Table 8.2: SCM1 Results on UCI Datasets.

Data Set SCM1-cv SCM1-b

Name train test b errs b errs

breastw 343 340 2 11 1 12

bupa 170 175 2 71 2 70

credit 353 300 12 65 1 57

Glass 107 107 4 20 4 19

haberman 144 150 2 41 1 39

Heart 150 147 1 28 1 23

pima 400 368 1 108 1 105

USvotes 235 200 8 26 3 19

Table 8.3: SCM2 Results on UCI Datasets.

Data Set SCM2-cv SCM2-b

Name train test b l∗ errs b l∗ errs

breastw 343 340 1 3 12 1 1 12

bupa 170 175 2 7 69 11 7 67

credit 353 300 11 6 49 8 5 46

Glass 107 107 7 6 19 3 5 18

haberman 144 150 8 2 36 2 2 37

Heart 150 147 1 2 24 1 2 23

pima 400 368 4 1 107 13 5 103

USvotes 235 200 7 3 19 4 2 15

each ball. Moreover, we have proposed a general data-compression risk bound that depends

explicitly on these two information sources. This bound therefore exhibits a non trivial trade-

off between sparsity (the inverse of the compression set size) and the margin (the inverse of

the message length) that classifiers should attempt to optimize on the training data. We

have also proposed a new learning algorithm for the SCM where the learner can control the

amount of trade-off between the sparsity of the classifier and the magnitude of its separating

margin. Compared to the algorithm of Marchand and Shawe-Taylor (2002), our experiments

on natural data sets indicate that this new learning algorithm generally produces classifiers

having a larger separating margin at the expenses of having more balls. The generalization

error of classifiers produced by the new algorithm was generally slightly better. Finally, the
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proposed data-compression risk bound seems to be an effective guide for choosing the proper

margin-sparsity trade-off of a classifier.

Note, however, the SCM2 learning algorithm depends on the a priori distance scale R

which in most cases, if not all, is unknown and this dependency limits the algorithm to

some extent. In the next Chapter, we investigate another approach based on the PAC-Bayes

theory to propose a learning algorithm for SCM that overcomes this limitation while still

performing a non-trivial margin-sparsity trade-off.



CHAPTER 9

A PAC-Bayes approach to the Set Covering Machine

The margin-sparsity trade-off based algorithm for the Set Covering Machine with data-dependent

balls that we proposed in the last Chapter suffered from the issue of choosing an a priori distance

scale R for the balls’ radii. In this chapter, we propose an alternative algorithm for the same based

on the PAC-Bayes theory making the risk bound depend more explicitly on margin and sparsity.

The results appeared in part in:

F. Laviolette, M. Marchand and M. Shah. A PAC-Bayes Approach to the Set Covering Machine.

In Advances in Neural Information Processing Systems 18, (Proceedings of NIPS 2005), 731–738,

MIT-Press, Cambridge, MA, USA.

9.1 Introduction

In the last chapter, we investigated if better SCM’s could be found by optimizing a non-

trivial function that depends on both the sparsity of the classifier and the magnitude of

its separating margin. Our main result was a general data-compression risk bound that

applies to any algorithm producing classifiers represented by two complementary sources of

information: a subset of the training set, called the compression set, and a message string

that code the additional information needed to identify a classifier from the compression set.

Based on this, we proposed a new algorithm for the SCM where the information string was

used to encode radius values for data-dependent balls and, consequently, the location of the

decision surface of the classifier. Since a small message string is sufficient when large regions

of equally good radius values exist for balls, the data compression risk bound applied to this

version of the SCM exhibits, indirectly, a non trivial-margin sparsity trade-off. However, the

proposed algorithm for the SCM suffered from the fact that the radius values, used in the

final classifier, depends on a a priori chosen distance scale R.

In this chapter, we use a new PAC-Bayes approach, that applies to the sample-compression

setting, and present a new learning algorithm for the SCM that does not suffer from the pre-

vious scaling problem. Moreover, we propose a risk bound that depends more explicitly on

the margin and which is also minimized by classifiers achieving a non trivial margin-sparsity

95
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trade-off.

We will follow the same notational conventions as before throughout this chapter.

9.2 A PAC-Bayes Risk Bound

Recall that the PAC-Bayes approach aims at providing PAC guarantees to “Bayesian” learn-

ing algorithms. These algorithms are specified in terms of a prior distribution P over a space

of classifiers that characterizes our prior belief about good classifiers (before the observation

of the data) and a posterior distribution Q (over the same space of classifiers) that takes

into account the additional information provided by the training data. The “PAC-Bayes

theorem” described in Chapter 3, provides a tight upper bound on the risk of a stochastic

classifier called the Gibbs classifier (see Langford (2005) for a survey).

However, for all these versions of the PAC-Bayes theorem, the prior P must be defined

without reference to the training data. Consequently, these theorems cannot be applied

to the sample-compression setting where classifiers are partly described by a subset of the

training data (as for the case of the SCM).

Again recall that in the sample compression setting, each classifier is described by a subset

Si of the training data, called the compression set, and a message string σ that represents

the additional information needed to obtain a classifier. In other words, in this setting, there

exists a reconstruction function R that outputs a classifier R(σ, Si) when given an arbitrary

compression set Si and a message string σ.

Given a training set S, the compression set Si ⊆ S is defined by a vector of indices

i
def
= (i1, . . . , i|i|) that points to individual examples in S. For the case of a conjunction of

balls, each j ∈ i will point to a training example that is used for a ball center and the

message string σ will be the vector ρρρ of radius values (defined above) that are used for the

balls. Hence, given Si and ρρρ, the classifier obtained from R(ρρρ, Si) is just the conjunction Ci,ρρρ

defined previously.1

Recently, Laviolette and Marchand (2005) have extended the PAC-Bayes theorem to the

sample-compression setting. Their proposed risk bound depends on a data-independent prior

P and a data-dependent posterior Q that are both defined on I ×M where I denotes the

set of the 2m possible index vectors i and M denotes, in our case, the set of possible radius

vectors ρρρ. The posterior Q is used by a stochastic classifier, called the sample-compressed

1We assume that the examples in Si are ordered as in S so that the kth radius value in ρρρ is assigned to

the kth example in Si.
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Gibbs classifier GQ, defined as follows. Given a training set S and given a new (testing)

input example x, a sample-compressed Gibbs classifier GQ chooses randomly (i, ρρρ) according

to Q to obtain classifier R(ρρρ, Si) which is then used to determine the class label of x.

In this chapter, we focus on the case where, given any training set S, the learner returns

a Gibbs classifier defined with a posterior distribution Q having all its weight on a single

vector i. Hence, a single compression set Si will be used for the final classifier. However,

the radius ρi for each i ∈ i will be chosen stochastically according to the posterior Q. Hence

we consider posteriors Q such that Q(i′, ρρρ) = I(i = i′)Qi(ρρρ) where i is the vector of indices

chosen by the learner. Hence, given a training set S, the true risk R(GQi
) of GQi

and its

empirical risk RS(GQi
) are defined by

R(GQi
)

def
= E

ρρρ∼Qi

R(R(ρρρ, Si)) ; RS(GQi
)

def
= E

ρρρ∼Qi

RSi
(R(ρρρ, Si)) ,

where i denotes the set of indices not present in i. Thus, i ∩ i = ∅ and i ∪ i = (1, . . . ,m).

In contrast with the posterior Q, the prior P assigns a non zero weight to several vectors

i. Let PI(i) denote the prior probability P assigned to vector i and let Pi(ρρρ) denote the

probability density function associated with prior P given i. The risk bound depends on the

Kullback-Leibler divergence KL(Q‖P ) between the posterior Q and the prior P which, in

our case, gives

KL(Qi‖P ) = E
ρρρ∼Qi

ln
Qi(ρρρ)

PI(i)Pi(ρρρ)
.

For these classes of posteriors Q and priors P , the PAC-Bayes theorem of Laviolette and

Marchand (2005) reduces to the following simpler version.

Theorem 20 (Laviolette and Marchand (2005)). Given all our previous definitions,

for any prior P and for any δ ∈ (0, 1]

Pr
S∼Dm

(
∀Qi : kl(RS(GQi

)‖R(GQi
)) ≤ 1

m−|i|
[
KL(Qi ‖P ) + ln m+1

δ

]) ≥ 1 − δ ,

where

kl(q‖p)
def
= q ln

q

p
+ (1− q) ln

1− q

1− p
for q < p .

To obtain a bound for R(GQi
) we need to specify Qi(ρρρ), PI(i), and Pi(ρρρ).

Since all vectors i having the same size |i| are, a priori, equally “good”, we choose

PI(i) =
1(
m
|i|
)p(|i|)

for any p(·) such that
∑m

d=0 p(d) = 1. We could choose p(d) = 1/(m+1) for d ∈ {0, 1, . . . ,m}
if we have complete ignorance about the size |i| of the final classifier. But since the risk bound
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will deteriorate for large |i|, it is generally preferable to choose, for p(d), a slowly decreasing

function of d.

For the specification of Pi(ρρρ), we assume that each radius value, in some predefined

interval [0, R], is equally likely to be chosen for each ρi such that i ∈ i. Here R is some

“large” distance specified a priori. For Qi(ρρρ), a margin interval [ai, bi] ⊆ [0, R] of equally

good radius values is chosen by the learner for each i ∈ i. Hence, we choose

Pi(ρρρ) =
∏

i∈i

1

R
=

(
1

R

)|i|
; Qi(ρρρ) =

∏

i∈i

1

bi − ai

.

Therefore, the Gibbs classifier returned by the learner will draw each radius ρi uniformly in

[ai, bi]. A deterministic classifier is then specified by fixing each radius values ρi ∈ [ai, bi].

It is tempting at this point to choose ρi = (ai + bi)/2 ∀i ∈ i (i.e., in the middle of each

interval). However, we will see shortly that the PAC-Bayes theorem offers a better guarantee

for another type of deterministic classifier.

Consequently, with these choices for Qi(ρρρ), PI(i), and Pi(ρρρ), the KL divergence between

Qi and P is given by

KL(Qi‖P ) = ln

(
m

|i|
)

+ ln

(
1

p(|i|)
)

+
∑

i∈i

ln

(
R

bi − ai

)
.

Notice that the KL divergence is small for small values of |i| (whenever p(|i|) is not too

small) and for large margin values (bi − ai). Hence, the KL divergence term in Theorem 20

favors both sparsity (small |i|) and large margins. Hence, in practice, the minimum might

occur for some GQi
that sacrifices sparsity whenever larger margins can be found.

Since the posterior Q is identified by i and by the intervals [ai, bi] ∀i ∈ i, we will now

refer to the Gibbs classifier GQi
by Gi

ab where a and b are the vectors formed by the unions

of ais and bis respectively. To obtain a risk bound for Gi
ab, we need to find a closed-form

expression for RS(Gi
ab). For this task, let U [a, b] denote the uniform distribution over [a, b]

and let σi
a,b(x) be the probability that a ball with center xi assigns to x the class label yi

when its radius ρ is drawn according to U [a, b]:

σi
a,b(x)

def
= Prρ∼U [a,b] (hi,ρ(x) = yi) =





1 if d(x,xi) ≤ a
b−d(x,xi)

b−a
if a ≤ d(x,xi) ≤ b

0 if d(x,xi) ≥ bi .

Therefore,

ζ i
a,b(x)

def
= Prρ∼U [a,b] (hi,ρ(x) = 1) =

{
σi

a,b(x) if yi = 1

1− σi
a,b(x) if yi = 0 .
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Now let Gi
ab(x) denote the probability that Ci,ρρρ(x) = 1 when each ρi ∈ ρρρ are drawn according

to U [ai, bi]. We then have

Gi
ab(x) =

∏

i∈i

ζ i
ai,bi

(x) .

Consequently, the risk R(x,y)(G
i
ab) on a single example (x, y) is given by Gi

ab(x) if y = 0 and

by 1−Gi
ab(x) otherwise. Therefore

R(x,y)(G
i
ab) = y(1−Gi

ab(x)) + (1− y)Gi
ab(x) = (1− 2y)(Gi

ab(x)− y) .

Hence, the empirical risk RS(Gi
ab) of the Gibbs classifier Gi

ab is given by

RS(Gi
ab) =

1

m− |i|
∑

j∈i

(1− 2yj)(G
i
ab(xj)− yj) .

From this expression we see that RS(Gi
ab) is small when Gi

ab(xj) → yj ∀j ∈ i. Training

points where Gi
ab(xj) ≈ 1/2 should therefore be avoided.

The PAC-Bayes theorem below provides a risk bound for the Gibbs classifier Gi
ab. Since

the Bayes classifier Bi
ab just performs a majority vote under the same posterior distribution

as the one used by Gi
ab, we have that Bi

ab(x) = 1 iff Gi
ab(x) > 1/2. From the above

definitions, note that the decision surface of the Bayes classifier, given by Gi
ab(x) = 1/2,

differs from the decision surface of classifier Ciρρρ when ρi = (ai + bi)/2 ∀i ∈ i. In fact there

does not exists any classifier Ciρρρ that has the same decision surface as Bayes classifier Bi
ab.

From the relation between Bi
ab and Gi

ab, it also follows that R(x,y)(B
i
ab) ≤ 2R(x,y)(G

i
ab) for

any (x, y). Consequently, R(Bi
ab) ≤ 2R(Gi

ab). Hence, we have the following theorem.

Theorem 21. Given all our previous definitions, for any δ ∈ (0, 1], for any p satisfying∑m
d=0 p(d) = 1, and for any fixed distance value R, we have:

PrS∼Dm

(
∀i, a,b : R(Gi

ab) ≤ sup

{
ε : kl(RS(Gi

ab)‖ε) ≤ 1

m− |i|
[
ln

(
m

|i|
)

+

+ ln

(
1

p(|i|)
)

+
∑

i∈i

ln

(
R

bi − ai

)
+ ln

m + 1

δ

]})
≥ 1− δ .

Furthermore: R(Bi
ab) ≤ 2R(Gi

ab) ∀i, , a,b.

Recall that the KL divergence is small for small values of |i| (whenever p(|i|) is not

too small) and for large margin values (bi − ai). Furthermore, the Gibbs empirical risk

RS(Gi
ab) is small when the training points are located far away from the Bayes decision

surface Gi
ab(x) = 1/2 (with Gi

ab(xj) → yj ∀j ∈ i). Consequently, the Gibbs classifier with

the smallest guarantee of risk should perform a non trivial margin-sparsity tradeoff.
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9.3 A Soft Greedy Learning Algorithm

Theorem 21 suggests that the learner should try to find the Bayes classifier Bi
ab that uses a

small number of balls (i.e., a small |i|), each with a large separating margin (bi − ai), while

keeping the empirical Gibbs risk RS(Gi
ab) at a low value. To achieve this goal, we have

adapted the greedy algorithm for the set covering machine (SCM).

In our case, however, we need to keep the Gibbs risk on S low instead of the risk of a

deterministic classifier. Since the Gibbs risk is a “soft measure” that uses the piece-wise

linear functions σi
a,b instead of “hard” indicator functions, we need a “softer” version of the

utility function Ui. Indeed, a negative example that falls in the linear region of a σi
a,b is in

fact partly covered. Following this observation, let k be the vector of indices of the examples

that we have used as ball centers so far for the construction of the classifier. Let us first

define the covering value C(Gk
ab) of Gk

ab by the “amount” of negative examples assigned to

class 0 by Gk
ab:

C(Gk
ab)

def
=

∑

j∈k

(1− yj)
[
1−Gk

ab(xj)
]

.

We also define the positive-side error E(Gk
ab) of Gk

ab as the “amount” of positive examples

assigned to class 0 :

E(Gk
ab)

def
=

∑

j∈k

yj

[
1−Gk

ab(xj)
]

.

We now want to add another ball, centered on an example with index i, to obtain a new vector

k′ containing this new index in addition to those present in k. Hence, we now introduce the

covering contribution of ball i (centered on xi) as

Ck
ab(i)

def
= C(Gk′

a′b′)− C(Gk
ab)

= (1− yi)
[
1− ζ i

ai,bi
(xi) Gk

ab(xi)
]
+

∑

j∈k′

(1− yj)
[
1− ζ i

ai,bi
(xj)

]
Gk

ab(xj) ,

and the positive-side error contribution of ball i as

Ek
ab(i)

def
= E(Gk′

a′b′)− E(Gk
ab)

= yi

[
1− ζ i

ai,bi
(xi) Gk

ab(xi)
]
+

∑

j∈k′

yj

[
1− ζ i

ai,bi
(xj)

]
Gk

ab(xj) .

Typically, the covering contribution of ball i should increase its “utility” and its positive-side

error should decrease it. Hence, we define the utility Uk
ab(i) of adding ball i to Gk

ab as

Uk
ab(i)

def
= Ck

ab(i)− pEk
ab(i) ,
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where parameter p represents the penalty of misclassifying a positive example. For a fixed

value of p, the “soft greedy” algorithm simply consists of adding, to the current Gibbs classi-

fier, a ball with maximum added utility until either the maximum number of possible features

(balls) has been reached or that all the negative examples have been (totally) covered. It is

understood that, during this soft greedy algorithm, we can remove an example (xj, yj) from

S whenever it is totally covered. This occurs whenever Gk
ab(xj) = 0.

The term
∑

i∈i ln(R/(bi − ai)), present in the risk bound of Theorem 21, favors “soft

balls” having large margins bi − ai. Hence, we introduce a margin parameter γ ≥ 0 that we

use as follows. At each greedy step, we first search among balls having bi − ai = γ. Once

such a ball, of center xi, having maximum utility has been found, we try to increase further

its utility be searching among all possible values of ai and bi > ai while keeping its center xi

fixed.2 Both p and γ will be chosen by cross validation on the training set.

9.3.1 Time Complexity Analysis

We conclude this section with an analysis of the running time of this soft greedy learning

algorithm for fixed p and γ. For each potential ball center, we first sort the m − 1 other

examples with respect to their distances from the center in O(m log m) time. Then, for this

center xi, the set of ai values that we examine are those specified by the distances (from xi)

of the m − 1 sorted examples.3 Since the examples are sorted, it takes time ∈ O(km) to

compute the covering contributions and the positive-side error for all the m− 1 values of ai.

Here k is the largest number of examples falling into the margin. We are always using small

enough γ values to have k ∈ O(log m) since, otherwise, the results are terrible. It therefore

takes time ∈ O(m log m) to compute the utility values of all the m − 1 different balls of a

given center. This gives a time ∈ O(m2 log m) to compute the utilities for all the possible

m centers. Once a ball with a largest utility value has been chosen, we then try to increase

further its utility by searching among O(m2) pair values for (ai, bi). We then remove the

examples covered by this ball and repeat the algorithm on the remaining examples. It is

well known that greedy algorithms of this kind have the following guarantee: if there exist

r balls that covers all the m examples, the greedy algorithm will find at most r ln(m) balls.

Since we almost always have r ∈ O(1), the running time of the whole algorithm will almost

always be ∈ O(m2 log2(m)).

2The possible values for ai and bi are defined by the location of the training points.
3Recall that for each value of ai, the value of bi is set to ai + γ at this stage.
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9.4 Empirical Results on Natural Data

Table 9.1: SVM and SCM Results on UCI Datasets.

Data Set SVM results SCM

Name train test C γ SVs errs b errs

breastw 343 340 1 5 38 15 2 12

bupa 170 175 2 0.17 169 66 2 62

credit 353 300 100 2 282 51 12 58

glass 107 107 10 0.17 51 29 4 22

haberman 144 150 2 1 81 39 2 39

heart 150 147 1 0.17 64 26 1 23

pima 400 368 0.5 0.02 241 96 1 108

USvotes 235 200 1 25 53 13 8 27

We have compared the new PAC-Bayes learning algorithm (called here SCM-PB), with

the old algorithm (called here SCM). Both of these algorithms were also compared with the

SVM equipped with a RBF kernel of variance γ and a soft margin parameter C. Each SCM

algorithm used the L2 metric since this is the metric present in the argument of the RBF

kernel. However, in contrast with Laviolette, Marchand and Shah (2005), each SCM was

constrained to use only balls having centers of the same class (negative for conjunctions and

positive for disjunctions).

Each algorithm was tested on the UCI data sets of Tables 9.1 and 9.2. Each data set

was randomly split in two parts. About half of the examples was used for training and the

remaining set of examples was used for testing. The corresponding values for these numbers

of examples are given in the “train” and “test” columns of Tables 9.1 and 9.2. The learning

parameters of all algorithms were determined from the training set only. The parameters C

and γ for the SVM were determined by the 5-fold cross validation (CV) method performed

on the training set. The parameters that gave the smallest 5-fold CV error were then used

to train the SVM on the whole training set and the resulting classifier was then run on the

testing set. Exactly the same method (with the same 5-fold split) was used to determine the

learning parameters of both SCM and SCM-PB.

The SVM results are reported in Table 9.1 where the “SVs” column refers to the number

of support vectors present in the final classifier. The “errs” column refers to the number

of classification errors obtained on the testing set. This notation is used also for all the

SCM results reported in Tables 9.1 and 9.2. In addition to this, the “b” and “γ” columns in
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Table 9.2: PAC-Bayes-SCM Results on UCI Datasets.

Data Set SCM-PB

Name train test b γ errs

breastw 343 340 4 0.08 10

bupa 170 175 6 0.1 67

credit 353 300 11 0.09 55

glass 107 107 16 0.04 19

haberman 144 150 1 0.2 38

heart 150 147 1 0 28

pima 400 368 7 0.1 105

USvotes 235 200 18 0.14 12

Table 9.1 refer, respectively, to the number of balls and the margin parameter (divided by the

average distance between the positive and the negative examples). The results reported for

SCM-PB (in Table 9.1) refer to the Bayes classifier only. The results for the Gibbs classifier

are similar. We observe that, except for bupa and heart, the generalization error of SCM-PB

was always smaller than SCM. However, the only significant difference occurs on USvotes.

We also observe that SCM-PB generally sacrifices sparsity (compared to SCM) to obtain

some margin γ > 0.



CHAPTER 10

Conclusions and Future Work

The initial efforts in this work started with the intention to investigate the extensibility of

the basic Set Covering Machine framework and to see if a simple learning bias of learning

conjunctions or disjunctions of (possibly data-dependent) features can lead to classifiers that

are “general”,1 “practical”2 and “have provable performance guarantees”. To this end, we

have been able indeed to find evidence that demonstrate these. We have seen extensions to

the SCM framework across different sets of features (Half-Spaces and Rays) and theoretical

frameworks that can lead to better performance practically and tight guarantees analytically.

In quantitative terms, we have seen for instance, that sometimes features such as data-

dependent Half-Spaces can lead to classifiers that yield better classification accuracy as well

as sparser solutions (as compared to initially proposed SCM with data-dependent balls).

Moreover, the resource requirements of the algorithm are within pragmatic bounds. Also,

as we saw, tight sample compression based guarantees can be provided over generalization

performance of the classifier in terms of the data-compression it achieves.

We also demonstrated how the SCM framework can be adapted to high dimensional

domains, especially to the gene expression data originating from DNA micro-arrays. The

aim was to obtain classifier(s) with high accuracy while making use of a small number

of attributes. Our approach of learning conjunctions or disjunctions of simple threshold

features called Rays that were built on single real valued attributes in conjunction with a

PAC-Bayes learning settings yielded a learning algorithm that not only gave us accuracies

competitive with the state-of-the-art approaches but also use a minimum number of genes

to do so (generally better by a factor of 100).

In addition to these novel algorithms based on the basic SCM framework, we were also

able to improve upon the initial Set Covering Machine algorithm itself and provided two

alternate algorithms that give better classifiers and tight guarantees.

Hence, we did manage to address our initial concerns that lead us to this research but

more important results coming out from this work should be considered in rather general

1applicable across various domains
2require reasonable amount of resources(time and sample size)
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sense of sample compression framework(s). This is because these results are not restricted to

the domain of the SCM but rather have significant implications in our overall understanding

of the sample compression theory as well as the Machine Learning technology. In this respect,

the most important results from this thesis come as follows:

i. A novel feature selection algorithm with provable theoretical guarantee. The algorithm

for learning a conjunction or disjunction of Rays not only performs feature selection but

also comes with a tight PAC-Bayes risk bound.3 An important implication resulting

from this work can be seen in the sense that instead of adapting the current machine

learning algorithms to work in high-dimensional domains by coupling them with feature

selectors (such as filters or wrappers), we can obtain better learning algorithms if

we adopt a more direct approach by designing algorithms that perform such feature

selection as a part of the learning process. Although it is difficult to come up with

generic algorithms, such algorithms can certainly be thought of in terms of the intended

application domain(s). Such task-oriented learning algorithms that integrate feature

selection with learning can not only provide good solutions but can also be theoretically

justifiable unlike most of the current approaches, lending them credibility.

ii. Another important result coming out from this work is in the form of margin-sparsity

trade-off bounds for sample compression based algorithms. It has been believed widely

for quite some time now that algorithms should perform a non-trivial margin-sparsity

trade-off to output better classifiers. We propose generalization bounds that explicitly

depend on both the sparsity of a classifier and the magnitude of its separating margin.

Moreover, we show how both sparsity and margin can be considered as different forms

of data compression and exploited by performing a trade-off to yield more general

classifiers in Chapters 7, 8 and 9.

We have also shown how sample compression based bounds can provide tighter guar-

antees to learning algorithms as opposed to data-independent bounds such as VC bounds.

This should be further viewed in the light of the results of Floyd and Warmuth (1995) and

the recent results of Kuzmin and Warmuth (2005) showing that concept classes, known as

maximum classes, of VC dimension d, have a sample compression scheme of size d. For these

classes, we can thus use the tighter sample-compression bounds instead of VC bounds. If

this can be proven to be true for “any” concept class of VC dimension d (an open prob-

lem currently), the sample compression bounds can provide tighter guarantees for learning

3It remains to be seen if the bound can guide the model selection process.
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algorithms for these classes.

10.1 Future Work

The directions worth investigating in future come from both the novel results as well as

limitations of this work:

Just as every approach comes with an inherent cost, our approaches are not free of

limitations. However, the existence of such limitations are a must to motivate further research

to obtain yet better solutions. Let us discuss some of the main issues in this work. The first

is probably the time complexity of the SCM with Half-space learning approach. Unlike the

initially proposed SCM algorithms with data-dependent balls as features that requires pairs

of examples to be examined to find the best ball in each greedy step, half-spaces require

triplets of examples to be examined resulting in an algorithm that is costly in terms of

computation. Efforts towards optimizing the algorithm time-wise are hence required. This

can not only result in a faster algorithm but also open up doors for further research along

the lines that we have done so far with the SCM framework.

Another such issue can be seen in terms of the algorithm for learning conjunction of Rays.

We indeed have obtained good results for the DNA micro-array datasets and that too with

good risk bounds, it however remains to be seen if this approach will work successfully over

other domains. As we discussed earlier how task-specific feature selections algorithms can

be designed, we can also investigate if this Rays’ approach can be further generalized across

various domains. An obvious domain that comes to mind is that of text categorization. We

have examined the performance of this learning algorithm over the text data obtained from

Electronic-Negotiations (Shah, Sokolova and Szpakowicz, 2004, Sokolova et. al., 2005) and

during our preliminary experiments we found that the algorithm performs acceptably and

yields competitive results with search heuristic based algorithms such as best-first feature

selection. However, further empirical evidence is required to conclude this initial observation.

Moreover, further investigations are also required for the Occam Razor approach to Rays as

given in Chapter 6. This approach can be improved on the lines of the Occam Razor based

approach that we proposed for the SCM with balls in Chapter 8, for instance, by putting a

threshold on the length of the message strings.

In view of the results that we have obtained in this thesis, the most logical extensions

and directions for future work can be viewed as below:

i. Utilize the risk bounds for model selection: The first and foremost task ahead would
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be to investigate if the risk bounds that we propose can successfully perform model

selection. We have seen such instances in the case of SCM with Half-spaces (Chapter 5)

as well as for our first margin-sparsity trade-off based approach for the SCM with

data-dependent balls (Chapter 8). Moreover, the original algorithm proposed for the

SCM also showed encouraging results where the sample compression based bound was

utilized for this task. Being able to perform model selection from bound helps us avoid

the costly k-fold cross validation based model selection. This can also open doors to

other algorithms based on bound minimization.

ii. Investigate more specific, possibly data-dependent, bounds : It is widely known that

algorithm specific bounds are generally tighter and can lead to more pragmatic limits

on the generalization error of classifiers. Hence, we should investigate if we can make

our risk bounds more specific, probably exploiting the algorithm’s dependency on the

training data for instance, to achieve tighter guarantees over the future performance

of classifier. Another interesting direction would be to investigate asymmetric loss

bounds.

iii. Extending SCM framework to high dimensional and/or large datasets : This is another

interesting domain worth looking into. Features such as Rays have demonstrated

competitive performance in high dimensional domains. However, further research is

needed in the associated directions to make the overall SCM framework applicable to

high dimensional domains as well as very large datasets. These may include optimizing

the algorithm for present set of features to make it faster for larger datasets, designing

new features to do so, and so on.

iv. Investigating richer hypothesis classes : With respect to the class of sample compression

framework, it might be worthwhile to look beyond the present hypothesis class of

learning conjunction or disjunction of features. Richer classes, such as decision lists

or even decision trees, may lead to yet better classifiers. This would however involve

addressing corresponding issues too, for instance, the time complexity of the resulting

algorithm(s).

With respect to overall Machine Learning technology, the insights obtained from this

work can be exploited on a rather general extent to come up with novel learning algorithms

for existing frameworks, not to mention the new approaches possible. One such scenario can

be seen in terms of the guarantees for decision trees based on the sample compression and

Occam’s razor settings. Another can be a possible incorporation of explicit margin-sparsity
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trade-off capability in existing machine learning algorithms. Even trade-off’s in other terms

can be thought of for the algorithms that have a bias towards other measures of complexity

than sparsity and margin of a classifier.
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